codeforces 675E Trains and Statistic 线段树+贪心统计
分析:这个题刚看起来无从下手
但是我们可以先简化问题,首先可以固定起点i,求出i+1到n的最小距离
它可以到达的范围是[i+1,a[i]],贪心的想,我们希望换一次车可以到达的距离尽量远
即:找一个k,使得i+1<=k<=a[i],a[k]的值最大,就可以保证,换一次车,可以到达的距离最
找k的操作可以用线段树来完成
统计当前dp[i]=dp[k]+(n-i)-(a[i]-k),因为当前区间内的点在[k+1,a[i]]的点多计了一次,所以减去
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <map>
#include <queue>
#include <set>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int N=1e5+;
int c[N<<],a[N];
LL dp[N];
void up(int rt){
if(a[c[rt<<]]>=a[c[rt<<|]])
c[rt]=c[rt<<];
else c[rt]=c[rt<<|];
}
void build(int rt,int l,int r){
if(l==r){c[rt]=l;return;}
int m=(l+r)>>;
build(rt<<,l,m);
build(rt<<|,m+,r);
up(rt);
}
int ask(int rt,int l,int r,int x,int y){
if(x<=l&&r<=y)return c[rt];
int ls=-,rs=-,m=(l+r)>>;
if(x<=m)ls=ask(rt<<,l,m,x,y);
if(y>m)rs=ask(rt<<|,m+,r,x,y);
if(ls==-)return rs;
if(rs==-)return ls;
if(a[ls]>=a[rs])return ls;
else return rs;
}
int main(){
int n;
scanf("%d",&n);
for(int i=;i<n;++i)
scanf("%d",&a[i]);
a[n]=n;
LL ret=;
build(,,n);
for(int i=n-;i>;--i){
int pos=ask(,,n,i+,a[i]);
dp[i]=dp[pos]+(n-i)-(a[i]-pos);
ret+=dp[i];
}
printf("%I64d\n",ret);
return ;
}
codeforces 675E Trains and Statistic 线段树+贪心统计的更多相关文章
- Codeforces 675E Trains and Statistic - 线段树 - 动态规划
题目传送门 快速的vjudge通道 快速的Codeforces通道 题目大意 有$n$个火车站,第$i$个火车站出售第$i + 1$到第$a_{i}$个火车站的车票,特殊地,第$n$个火车站不出售车票 ...
- Codeforces 675E Trains and Statistic(DP + 贪心 + 线段树)
题目大概说有n(<=10W)个车站,每个车站i卖到车站i+1...a[i]的票,p[i][j]表示从车站i到车站j所需买的最少车票数,求所有的p[i][j](i<j)的和. 好难,不会写. ...
- codeforces 675E E. Trains and Statistic(线段树+dp)
题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- CodeForces 675E Trains and Statistic
贪心,递推,线段树,$RMQ$. 假设我们记$ans[i]$是以$i$点为起点对答案的贡献,那么答案就是$\sum\limits_{i = 1}^n {ans[i]}$. $ans[i]$怎么计算呢? ...
- Codeforces Round #353 (Div. 2) E. Trains and Statistic 线段树+dp
题目链接: http://www.codeforces.com/contest/675/problem/E 题意: 对于第i个站,它与i+1到a[i]的站有路相连,先在求所有站点i到站点j的最短距离之 ...
- BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心
BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心 Description 在计算机中,CPU只能和高速缓存Cache直接交换数据.当所需的内存单元不在Cache中时,则需要从主存里把数 ...
- Bzoj5251 线段树+贪心
Bzoj5251 线段树+贪心 记录本蒟蒻省选后的第一篇题解!国际惯例的题面:首先这个东西显然是一棵树.如果我们把数值排序,并建立这棵树的dfs序,显然dfs序上的一个区间对应数值的一个区间,且根为数 ...
- 2018.10.20 NOIP模拟 蛋糕(线段树+贪心/lis)
传送门 听说是最长反链衍生出的对偶定理就能秒了. 本蒟蒻直接用线段树模拟维护的. 对于第一维排序. 维护第二维的偏序关系可以借助线段树/树状数组维护逆序对的思想建立权值线段树贪心求解. 代码
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
随机推荐
- 最长不下降子序列//序列dp
最长不下降子序列 时间: 1000ms / 空间: 131072KiB / Java类名: Main 描述 求最长不下降子序列的长度 输入格式 第一行为n,表示n个数第二行n个数 输出格式 最长不下降 ...
- lintcode:落单的数
题目: 落单的数 给出2*n + 1 个的数字,除其中一个数字之外其他每个数字均出现两次,找到这个数字. 样例 给出 [1,2,2,1,3,4,3],返回 4 挑战 一次遍历,常数级的额外空间复杂度 ...
- git Unstaged changes after reset
转载:http://my.oschina.net/yuzn/blog/150275 相信大家都做过这个操作,就是本地做了修改后,不想提交,想恢复如初 git reset HEAD 这样的话,我们就 ...
- Ios 弹框 MJPopup,KxMenu
IOS 弹框 如果直接弹出一个自定义的视图 可以选用第三方: MJPopup 弹出: if(!bandview) { bandview=[[[NSBundle mainBundle]loadNibNa ...
- shutdown -s -t
import java.io.*; import java.awt.*; public class HackDemo{ public static void main(String args[])th ...
- DoG 、Laplacian、图像金字塔详解
DoG(Difference of Gaussian) DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法,其做法较简单,证明较复杂,具体讲解如下: Differe ...
- Python之格式化输出讲解
1.格式化输出整数python print也支持参数格式化,与C言的printf似, strHello = "the length of (%s) is %d" %(Hello W ...
- Windows下搭建MySql Master-Master Replication
1.首先下载最新版的MySql Server (http://dev.mysql.com/downloads/windows/installer/) 2.安装MySql Server到两台机器上 My ...
- C# 常用控件及单击事件
1.窗体 1.常用属性 (1)Name属性:用来获取或设置窗体的名称,在应用程序中可通过Name属性来引用窗体. (2)WindowState属性: 用来获取或设置窗体的窗口状态. 取值有三种: No ...
- Difference between 2>&-, 2>/dev/null, |&, &>/dev/null and >/dev/null 2>&1
Reference link: http://unix.stackexchange.com/questions/70963/difference-between-2-2-dev-null-dev-nu ...