分析:这个题刚看起来无从下手

但是我们可以先简化问题,首先可以固定起点i,求出i+1到n的最小距离

它可以到达的范围是[i+1,a[i]],贪心的想,我们希望换一次车可以到达的距离尽量远

即:找一个k,使得i+1<=k<=a[i],a[k]的值最大,就可以保证,换一次车,可以到达的距离最

找k的操作可以用线段树来完成

统计当前dp[i]=dp[k]+(n-i)-(a[i]-k),因为当前区间内的点在[k+1,a[i]]的点多计了一次,所以减去

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdlib.h>
#include <map>
#include <queue>
#include <set>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int N=1e5+;
int c[N<<],a[N];
LL dp[N];
void up(int rt){
if(a[c[rt<<]]>=a[c[rt<<|]])
c[rt]=c[rt<<];
else c[rt]=c[rt<<|];
}
void build(int rt,int l,int r){
if(l==r){c[rt]=l;return;}
int m=(l+r)>>;
build(rt<<,l,m);
build(rt<<|,m+,r);
up(rt);
}
int ask(int rt,int l,int r,int x,int y){
if(x<=l&&r<=y)return c[rt];
int ls=-,rs=-,m=(l+r)>>;
if(x<=m)ls=ask(rt<<,l,m,x,y);
if(y>m)rs=ask(rt<<|,m+,r,x,y);
if(ls==-)return rs;
if(rs==-)return ls;
if(a[ls]>=a[rs])return ls;
else return rs;
}
int main(){
int n;
scanf("%d",&n);
for(int i=;i<n;++i)
scanf("%d",&a[i]);
a[n]=n;
LL ret=;
build(,,n);
for(int i=n-;i>;--i){
int pos=ask(,,n,i+,a[i]);
dp[i]=dp[pos]+(n-i)-(a[i]-pos);
ret+=dp[i];
}
printf("%I64d\n",ret);
return ;
}

codeforces 675E Trains and Statistic 线段树+贪心统计的更多相关文章

  1. Codeforces 675E Trains and Statistic - 线段树 - 动态规划

    题目传送门 快速的vjudge通道 快速的Codeforces通道 题目大意 有$n$个火车站,第$i$个火车站出售第$i + 1$到第$a_{i}$个火车站的车票,特殊地,第$n$个火车站不出售车票 ...

  2. Codeforces 675E Trains and Statistic(DP + 贪心 + 线段树)

    题目大概说有n(<=10W)个车站,每个车站i卖到车站i+1...a[i]的票,p[i][j]表示从车站i到车站j所需买的最少车票数,求所有的p[i][j](i<j)的和. 好难,不会写. ...

  3. codeforces 675E E. Trains and Statistic(线段树+dp)

    题目链接: E. Trains and Statistic time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. CodeForces 675E Trains and Statistic

    贪心,递推,线段树,$RMQ$. 假设我们记$ans[i]$是以$i$点为起点对答案的贡献,那么答案就是$\sum\limits_{i = 1}^n {ans[i]}$. $ans[i]$怎么计算呢? ...

  5. Codeforces Round #353 (Div. 2) E. Trains and Statistic 线段树+dp

    题目链接: http://www.codeforces.com/contest/675/problem/E 题意: 对于第i个站,它与i+1到a[i]的站有路相连,先在求所有站点i到站点j的最短距离之 ...

  6. BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心

    BZOJ_1826_[JSOI2010]缓存交换 _线段树+贪心 Description 在计算机中,CPU只能和高速缓存Cache直接交换数据.当所需的内存单元不在Cache中时,则需要从主存里把数 ...

  7. Bzoj5251 线段树+贪心

    Bzoj5251 线段树+贪心 记录本蒟蒻省选后的第一篇题解!国际惯例的题面:首先这个东西显然是一棵树.如果我们把数值排序,并建立这棵树的dfs序,显然dfs序上的一个区间对应数值的一个区间,且根为数 ...

  8. 2018.10.20 NOIP模拟 蛋糕(线段树+贪心/lis)

    传送门 听说是最长反链衍生出的对偶定理就能秒了. 本蒟蒻直接用线段树模拟维护的. 对于第一维排序. 维护第二维的偏序关系可以借助线段树/树状数组维护逆序对的思想建立权值线段树贪心求解. 代码

  9. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

随机推荐

  1. hdu 4418 Time travel 概率DP

    高斯消元求期望!! 将n时间点构成2*(n-1)的环,每一点的期望值为dp[i]=dp[i+1]*p1+dp[i+2]*p2+……+dp[i+m]*pm+1. 这样就可以多个方程,利用高斯消元求解. ...

  2. JavaSE GUI显示列表 JTable的刷新 重新加载新的数据

    JTable在显示所有数据之后,假如需要搜索某个名字,则会获取新的列表数据. 假设datas是JTable的数据,定义为: private Vector<Vector> datas = n ...

  3. Floodlight中的临时流表

    运行Floodlight,在Mininet中新建一个拓扑之后,并未添加相关的流表项,但是主机之间却可以相互通信.执行pingall操作,任意两个主机之间都能通.相当于没有任何路由表的路由器,它是怎么让 ...

  4. mac下安装mysql 连接时候报错 ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)

    http://segmentfault.com/q/1010000000094608 同样的问题,先在网上搜了下其他人解决这个问题的方法,是去修改mysql.cnf文件添加mysql.sock文件路径 ...

  5. Compare_Connect_Letter

    题目描述: 比较两个数字mn和nm(如果mn<nm则m<n, 如果nm<mn则n<m,否则n=m) 连接这两个数字 如(mnnm) //比较两个数字mn和nm(如果mn< ...

  6. QC、IQC、IPQC、FQC、OQC、QA分别的定义

    QC:即英文(Quality Control)的简称,中文意义是品质控制,其在ISO8402:1994的定义是“为达到品质要求所采取的作业技术的活动”.有些推行ISO9000的组织会设置这样一个部门或 ...

  7. VS2010/MFC编程入门之一(VS2010与MSDN安装过程图解)

    原文地址: VS2010/MFC编程入门之一(VS2010与MSDN安装过程图解)-软件开发-鸡啄米 http://www.jizhuomi.com/software/139.html   上一讲中鸡 ...

  8. NSSize

    #import <Foundation/Foundation.h>   int main(int argc, const char * argv[]) {    @autoreleasep ...

  9. openCv 图像顺时针、逆时针旋转

    通过下面这个函数调用 Rotate90(workImg,270); //顺时针旋转 Rotate90(workImg,90); //逆时针旋转 实现,其实用该函数旋转任意度数对正方形图都ok,只是长方 ...

  10. PHP之APC缓存详细介绍(转)

    1.APC缓存简介 APC,全称是Alternative PHP Cache,官方翻译叫”可选PHP缓存”.它为我们提供了缓存和优化PHP的中间代码的框架. APC的缓存分两部分:系统缓存和用户数据缓 ...