主模块
规格数据输入(加载,调格式,归一化)
定义网络结构
设置训练参数
调用初始化模块
调用训练模块
调用测试模块
画图
初始化模块
设置初始化参数(输入通道,输入尺寸)
遍历层(计算尺寸,输入输出通道,参数数量,w,b)
设置输出标签数
设置最后一层的神经元数
设置输出神经元的偏置
设置最后一层和输出神经元间的权重
训练模块
计算训练批数(读取样本个数,每批数目)
批循环
读取每批样本
前向传播
反向传播
更新参数
更新误差曲线
前向传播模块
读取层数
遍历层
判断层的类型
*卷积层:
*池化层:
*将特征图组成张量
*将结果赋值给输出神经元
反向传播模块
计算偏差
计算损失函数
反向传播delta
*卷积层:
*池化层:
计算梯度
*权重:
*偏置:
计算最后一层和输出神经元间权重的改正值
计算输出神经元偏置的改正值
更新参数模块
寻找卷积层
*更新权重
*更新偏置
更新最后一层和输出神经元间权重
更新输出神经元偏置
测试模块
调用前向传播模块
读取输出神经元的结果
准备真值
计算错误率

CNN反向传播算法过程的更多相关文章

  1. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  2. 反向传播算法-损失函数&激活函数

    在监督学习中,传统的机器学习算法优化过程是采用一个合适的损失函数度量训练样本输出损失,对损失函数进行优化求最小化的极值,相应一系列线性系数矩阵W,偏置向量b即为我们的最终结果.在DNN中,损失函数优化 ...

  3. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

  4. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  5. (3)Deep Learning之神经网络和反向传播算法

    往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...

  6. 深度学习——深度神经网络(DNN)反向传播算法

    深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础. 回顾监督学习的一般性问题.假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, ...

  7. 稀疏自动编码之反向传播算法(BP)

    假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...

  8. 循环神经网络(RNN)模型与前向反向传播算法

    在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Rec ...

  9. LSTM模型与前向反向传播算法

    在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long ...

随机推荐

  1. JavaScript的变量提升机制

    变量提升 JavaScript的变量提升有两种,用var声明的变量以及用function声明的变量. 用var声明的变量 我们先来看下面这段代码,a的值是多少 代码1 console.log(a); ...

  2. Python分析盘点2019全球流行音乐:是哪些歌曲榜单占领了我们?

    写在前面:圣诞刚过,弥留者节日气息的大家是否还在继续学习呐~在匆忙之际也不忘给自己找几首好听的歌曲放松一下,缠绕着音乐一起来看看关于2019年流行音乐趋势是如何用Python分析的吧! 昨天下午没事儿 ...

  3. Linux - TLCL

    三. 文件系统中跳转 pwd - Print name of current working directory cd - Change directory ls - List directory c ...

  4. c# 调用c++sdk时结构体与byte数组互转

    /// <summary> /// 由结构体转换为byte数组 /// </summary> public static byte[] StructureToByte<T ...

  5. CentOS 7控制台屏幕分辨率问题

    我们在服务器上,很少会安装图形化界面,一般都使用字符界面的控制台.CentOS 下,控制台分辨率缺省情况下,变得很高,导致在显示器上花屏或者只能显示局部. 这是由于使用了frame buffer,好处 ...

  6. windows下安装elasticsearch-6.4.3和elasticsearch-head插件

    windows下安装elasticsearch-6.4.3和elasticsearch-head插件 博客分类: elasticsearch es  ElasticSearch下载地址:https:/ ...

  7. 「JSOI2014」矩形并

    「JSOI2014」矩形并 传送门 我们首先考虑怎么算这个期望比较好. 我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来 ...

  8. 一个不会coding的girl Linux日常之命令awk

    Linux日常之命令awk 参考:http://www.zsythink.net/archives/tag/awk/ 一. 命令awk简介 1. awk是一种编程语言,用于对文本和数据进行处理的 2. ...

  9. log4j2 异步多线程打印日志

    log4j2 异步多线程打印日志 Maven依赖 <dependency> <groupId>org.apache.logging.log4j</groupId> ...

  10. PAT T1013 Image Segmentation

    krustral算法加并查集,按题给要求维护并查集~ #include<bits/stdc++.h> using namespace std; ; const int inf=1e9; i ...