CF1324 --- Maximum White Subtree
CF1324 --- Maximum White Subtree
题干
You are given a tree consisting of \(n\) vertices. A tree is a connected undirected graph with \(n−1\) edges. Each vertex \(v\) of this tree has a color assigned to it (\(a_v\)=1 if the vertex \(v\) is white and \(0\) if the vertex \(v\) is black).
You have to solve the following problem for each vertex \(v\): what is the maximum difference between the number of white and the number of black vertices you >can obtain if you choose some subtree of the given tree that contains the vertex \(v\)? The subtree of the tree is the connected subgraph of the given tree. More >formally, if you choose the subtree that contains \(cnt_w\) white vertices and \(cnt_b\) black vertices, you have to maximize \(cnt_w−cnt_b\).\(\mathcal{Input}\)
The first line of the input contains one integer \(n\) (\(2 \leq n \leq 2 * 10^5\)) — the number of vertices in the tree.
The second line of the input contains \(n\) integers \(a_1,a_2,\cdots, a_n (0\leq a_i \leq 1)\), where \(a_i\) is the color of the \(i-th\) vertex.
Each of the next \(n−1\) lines describes an edge of the tree. Edge \(i\) is denoted by two integers \(u_i\) and \(v_i\), the labels of vertices it connects \((1 \leq u_i,v_i \leq n,u_i \not= v_i)\).
It is guaranteed that the given edges form a tree.\(\mathcal{Output}\)
Print \(n\) integers \(res_1, res_2, \cdots, res_n\), where \(res_i\) is the maximum possible difference between the number of white and black vertices in some subtree that contains the vertex \(i\).\(\mathcal{Example}\)
\(Case_1\)
\(Input\)
9
0 1 1 1 0 0 0 0 1
1 2
1 3
3 4
3 5
2 6
4 7
6 8
5 9
\(Output\)
2 2 2 2 2 1 1 0 2\(Case_2\)
\(Input\)
4
0 0 1 0
1 2
1 3
1 4
\(Output\)
0 -1 1 -1\(\mathcal{Note}\)
The first example is shown below:
The black vertices have bold borders.
In the second example, the best subtree for vertices \(2\),\(3\) and \(4\) are vertices \(2\),\(3\) and \(4\) correspondingly. And the best subtree for the vertex \(1\) is the subtree consisting of vertices \(1\) and \(3\).\(\mathcal{Tag}\)
dfs and similardp*1800
思路分析
这题要求的是求出对任何一个vertex \(v\),求出包含这个节点的子树\(cnt_w - cnt_b\)的最大值。
暴力想法
首先思考下暴力写法应该如何写。

所以,对于所有可能的路径的贡献值的累加,且贡献值需大于等于\(0\).不妨设\(dp[v]\)代表该结点的最大值。故
\]
假如用暴力写法,就是对于每个结点\(v\),暴力搜索所有的adjacent结点,利用\(dfs\)暴力搜索。但是结点最大为\(2*10^5\)这个暴力算法显然会超时,考虑如何优化。
算法优化
对于从下往上的贡献,可以利用从下往上的\(dfs\)树形\(dp\)进行获取,剩余的就是刨去以\(v\)为根的子树的贡献值比较难求。在这里我们设\(fa\)为结点\(v\)的父节点。\(f_v\)代表从下往上以\(v\)为根的白点数减去黑点数的最大值.\(dp[v]\)代表最终的最大值。因此根据刨去以\(v\)为根的子树的贡献值这个思想,我们可以发现:
\]
就是刨去以\(v\)为根的子树的贡献值。因此最终我们可以写出状态转移方程:
1f[v] & if \;v = root \\
f[v] + max(0, dp[fa] - max(0, f[v])) & if\; v \not= root\\
\end{array}\right.
\]
因此最后我们的思路为:
- 从下往上树形\(dp\),计算\(f_v\)
- 从上往下换根\(dp\),计算\(dp[v]\)
代码
#include<bits/stdc++.h>
using namespace std;
using VI = vector<int>;
using VVI = vector<VI>;
VI a;
VI dp;
VI ans;
VVI e;
void dfs(int x, int fa = -1){
dp[x] = a[x];
for (int to : e[x]){
if (to == fa) continue;
dfs(to, x);
dp[x] += max(0, dp[to]);
}
}
void rdfs(int x, int fa = -1){
ans[x] = dp[x];
for (int to : e[x]){
if (to == fa) continue;
dp[x] -= max(0, dp[to]);
dp[to] += max(0, dp[x]);
rdfs(to, x);
dp[to] -= max(0, dp[x]) ;
dp[x] += max(0, dp[to]);
}
}
int main(){
int n; cin >> n;
a = dp = ans = VI(n);
e = VVI(n);
for (int i = 0; i < n; ++ i){
cin >> a[i];
if (a[i] == 0) a[i] = -1;
}
for (int i = 0; i < n - 1; ++ i){
int x, y;
cin >> x >> y;
-- x, -- y;
e[x].push_back(y);
e[y].push_back(x);
}
dfs(0);
rdfs(0);
for (int ret : ans) cout << ret << " ";
cout << endl;
return 0;
}
第一次在博客园写题解,加油加油! 每天一个CF题!
CF1324 --- Maximum White Subtree的更多相关文章
- CF1324F Maximum White Subtree 题解
原题链接 简要题意: 给定一棵树,每个点有黑白两种颜色:对每个节点,求出包含当前节点的连通图,使得白点数与黑点数差最小.输出这些值. F题也这么简单,咳咳,要是我也熬夜打上那么一场...可惜没时间打啊 ...
- CF1324F Maximum White Subtree——换根dp
换根dp,一般用来解决在无根树上,需要以每个节点为根跑一边dfs的dp问题 我们做两遍dfs 先钦定任意一个点为根 第一遍,算出\(f_i\)表示\(i\)的子树产生的答案,这里,子树指的是以我们钦定 ...
- Codeforces 1324F Maximum White Subtree DFS
题意 给你无根一颗树,每个节点是黑色或白色.对于每一个节点,问包含该节点的权值最大的子树. 子树的权值等于子树中白点的个数减去黑点的个数. 注意,这里的子树指的是树的联通子图. 解题思路 这场就这题卡 ...
- Codeforces Round #627 (Div. 3) F - Maximum White Subtree(深度优先搜索)
题意: n 个点 n - 1 条边的树,问每个点所在所有子树中白黑点数目的最大差. 思路: 白点先由下至上汇集,后由上至下分并. #include <bits/stdc++.h> usin ...
- [Leetcode] 1120. Maximum Average Subtree
Given the root of a binary tree, find the maximum average value of any subtree of that tree. (A subt ...
- 【LeetCode】1120. Maximum Average Subtree 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 日期 题目地址:https://leetcod ...
- CF1092 --- Tree with Maximum Cost
CF1324 --- Maximum White Subtree 题干 You are given a tree consisting exactly of \(n\) vertices. Tree ...
- Codeforces 1238F. The Maximum Subtree
传送门 考虑构造一些区间使得树尽可能的 "大" 发现这棵树最多就是一条链加上链上出去的其他边连接的点 构造的区间大概长这样(图比较丑请谅解..$qwq$,图中每一个 "└ ...
- [CF 1238F] The Maximum Subtree 树DP
题意 给定一颗树,求这个树的最大子树,且这个子树是一个good-tree. good-tree的定义是:每个节点可以表示成一个数值区间,而树上的边表示两个点表示的数值区间相交. 题解 通过分析可以发现 ...
随机推荐
- A换算时间(只想开学)HDU 6556
题目链接 思路如下 把时间转化为 24小时制下进行考虑,首先我们要明白(在24小时制下):12 点表示是下午PM ,而 24点表示的是明天的 0点(12小时制下),这两个地方需要特殊考虑 题解如下 # ...
- CCF2018 12 2题,小明终于到家了
最近在愁着备考,拿CCF刷题,就遇到这个难题,最后搜索了一下大佬们的方法,终于解决, 问题描述 一次放学的时候,小明已经规划好了自己回家的路线,并且能够预测经过各个路段的时间.同时,小明通过学校里安装 ...
- 项目踩坑实记 :2019年(SSM 架构)
1.Bootstarp 相关 JS 结合 Bootstarp 初始化表格后,如果是 Ajax 请求获得返回数据,重新渲染数据到表格的话,用下面的函数. ChanInfTable 是表格的 id. 2. ...
- 微信小程序--分享功能
微信小程序--分享功能 微信小程序前段时间开放了小程序右上角的分享功能, 可以分享任意一个页面到好友或者群聊, 但是不能分享到朋友圈 这里有微信开发文档链接:点击跳转到微信分享功能API 入口方法: ...
- UC接口文档
UC接口文档 一.功能描述 提供同步登录.退出.注册等相关接口,可以实现用户一个账号,在一处登录,全站通行. 二.测试环境UC地址 http://s1.p5w.net/uc/ 三.相关接口 UC_AP ...
- 让 .NET 轻松构建中间件模式代码
让 .NET 轻松构建中间件模式代码 Intro 在 asp.net core 中中间件的设计令人叹为观止,如此高大上的设计何不集成到自己的代码里呢. 于是就有了封装了一个简单通用的中间件模板的想法, ...
- VM卸载不完全,重装的一个下午
玩软件就是随时面临着重新来过的危险.今天一不小心就把VM给高爆了,爆的很高的那种. 卸载不完全的VM如何在不重装系统的情况下安装. 首先第一步,肯定是通过控制面板去卸载VM,但是....但是...我靠 ...
- 【Selenium06篇】python+selenium实现Web自动化:日志处理
一.前言 最近问我自动化的人确实有点多,个人突发奇想:想从0开始讲解python+selenium实现Web自动化测试,请关注博客持续更新! 这是python+selenium实现Web自动化第六篇博 ...
- 正则表达式(JS表格简要总结)
1. JS中正则表达式定义 JavaScript 中的正则表达式用 RegExp 对象表示. JS中定义正则表达式的两种方法: 方法 示例 RegExp 对象 var pattern = new Re ...
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...
