今日目标:爬取CVPR2018论文,进行分析总结出提到最多的关键字,生成wordCloud词云图展示,并且设置点击后出现对应的论文以及链接

对任务进行分解:

①爬取CVPR2018的标题,简介,关键字,论文链接

②将爬取的信息生成wordCloud词云图展示

③设置点击事件,展示对应关键字的论文以及链接

一、爬虫实现

由于文章中并没有找到关键字,于是将标题进行拆分成关键字,用逗号隔开

import re
import requests
from bs4 import BeautifulSoup
import demjson
import pymysql
import os headers = {'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36'}#创建头部信息
url='http://openaccess.thecvf.com/CVPR2018.py'
r=requests.get(url,headers=headers)
content=r.content.decode('utf-8')
soup = BeautifulSoup(content, 'html.parser')
dts=soup.find_all('dt',class_='ptitle')
hts='http://openaccess.thecvf.com/'
#数据爬取
alllist=[]
for i in range(len(dts)):
print('这是第'+str(i)+'个')
title=dts[i].a.text.strip()
href=hts+dts[i].a['href']
r = requests.get(href, headers=headers)
content = r.content.decode('utf-8')
soup = BeautifulSoup(content, 'html.parser')
#print(title,href)
divabstract=soup.find(name='div',attrs={"id":"abstract"})
abstract=divabstract.text.strip()
#print('第'+str(i)+'个:',abstract)
alllink=soup.select('a')
link=hts+alllink[4]['href'][6:]
keyword=str(title).split(' ')
keywords=''
for k in range(len(keyword)):
if(k==0):
keywords+=keyword[k]
else:
keywords+=','+keyword[k]
value=(title,abstract,link,keywords)
alllist.append(value)
print(alllist)
tuplist=tuple(alllist)
#数据保存
db = pymysql.connect("localhost", "root", "fengge666", "yiqing", charset='utf8')
cursor = db.cursor()
sql_cvpr = "INSERT INTO cvpr values (%s,%s,%s,%s)"
try:
cursor.executemany(sql_cvpr,tuplist)
db.commit()
except:
print('执行失败,进入回调3')
db.rollback()
db.close()

二、将数据进行wordCloud展示

首先找到对应的包,来展示词云图

<script src='https://cdn.bootcss.com/echarts/3.7.0/echarts.simple.js'></script>
<script src='js/echarts-wordcloud.js'></script>
<script src='js/echarts-wordcloud.min.js'></script>

然后通过异步加载,将后台的json数据进行展示。

由于第一步我们获得的数据并没有对其进行分析,因此我们在dao层会对其进行数据分析,找出所有的关键字的次数并对其进行降序排序(用Map存储是最好的方式)

public Map<String,Integer> getallmax()
{
String sql="select * from cvpr";
Map<String, Integer>map=new HashMap<String, Integer>();
Map<String, Integer>sorted=new HashMap<String, Integer>();
Connection con=null;
Statement state=null;
ResultSet rs=null;
con=DBUtil.getConn();
try {
state=con.createStatement();
rs=state.executeQuery(sql);
while(rs.next())
{
String keywords=rs.getString("keywords");
String[] split = keywords.split(",");
for(int i=0;i<split.length;i++)
{
if(map.get(split[i])==null)
{
map.put(split[i],0);
}
else
{
map.replace(split[i], map.get(split[i])+1);
}
}
}
} catch (SQLException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
DBUtil.close(rs, state, con);
sorted = map
.entrySet()
.stream()
.sorted(Collections.reverseOrder(comparingByValue()))
.collect(
toMap(Map.Entry::getKey, Map.Entry::getValue, (e1, e2) -> e2,
LinkedHashMap::new));
return sorted;
}

到servlet层后,我们还需对数据进行一定的筛选(介词,a,等词语应该去除掉,要不然会干扰我们分析关键字),取前30名关键字,在前台进行展示

request.setCharacterEncoding("utf-8");
Map<String, Integer>sortMap=dao.getallmax();
JSONArray json =new JSONArray();
int k=0;
for (Map.Entry<String, Integer> entry : sortMap.entrySet())
{
JSONObject ob=new JSONObject();
ob.put("name", entry.getKey());
ob.put("value", entry.getValue());
if(!(entry.getKey().equals("for")||entry.getKey().equals("and")||entry.getKey().equals("With")||entry.getKey().equals("of")||entry.getKey().equals("in")||entry.getKey().equals("From")||entry.getKey().equals("A")||entry.getKey().equals("to")||entry.getKey().equals("a")||entry.getKey().equals("the")||entry.getKey().equals("by")))
{
json.add(ob);
k++;
}
if(k==30)
break;
}
System.out.println(json.toString());
response.getWriter().write(json.toString());

三、设置点击事件,展示对应关键字的论文以及链接

//设置点击效果
var ecConfig = echarts.config;
myChart.on('click', eConsole);

用函数来实现点击事件的内容:通过点击的关键字,后台进行模糊查询,找到对应的论文题目以及链接,返回到前端页面

 //点击事件
function eConsole(param) {
if (typeof param.seriesIndex == 'undefined') {
return;
}
if (param.type == 'click') {
var word=param.name;
var htmltext="<table class='table table-striped' style='text-align:center'><caption style='text-align:center'>论文题目与链接</caption>";
$.post(
'findkeytitle',
{'word':word},
function(result)
{
json=JSON.parse(result);
for(i=0;i<json.length;i++)
{
htmltext+="<tr><td><a target='_blank' href='"+json[i].Link+"'>"+json[i].Title+"</a></td></tr>";
}
htmltext+="</table>"
$("#show").html(htmltext);
}
)
}
}

成果展示:

前台页面代码:

<html>
<head>
<meta charset="utf-8">
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- jQuery (Bootstrap 的所有 JavaScript 插件都依赖 jQuery,所以必须放在前边) -->
<script src="js/jquery-1.11.3.min.js"></script>
<!-- 加载 Bootstrap 的所有 JavaScript 插件。你也可以根据需要只加载单个插件。 -->
<script src="js/bootstrap.js"></script>
<script src='https://cdn.bootcss.com/echarts/3.7.0/echarts.simple.js'></script>
<script src='js/echarts-wordcloud.js'></script>
<script src='js/echarts-wordcloud.min.js'></script>
</head>
<body>
<style>
body{
background-color: black;
}
#main {
width: 70%;
height: 100%;
margin: 0;
float:right;
background: black;
}
#show{
overflow-x: auto;
overflow-y: auto;
width: 30%;
height: 100%;
float:left;
margin-top:100dp;
padding-top:100dp;
background: pink;
}
</style>
<div id='show'></div>
<div id='main'></div>
<script>
$(function(){
echartsCloud();
});
//点击事件
function eConsole(param) {
if (typeof param.seriesIndex == 'undefined') {
return;
}
if (param.type == 'click') {
var word=param.name;
var htmltext="<table class='table table-striped' style='text-align:center'><caption style='text-align:center'>论文题目与链接</caption>";
$.post(
'findkeytitle',
{'word':word},
function(result)
{
json=JSON.parse(result);
for(i=0;i<json.length;i++)
{
htmltext+="<tr><td><a target='_blank' href='"+json[i].Link+"'>"+json[i].Title+"</a></td></tr>";
}
htmltext+="</table>"
$("#show").html(htmltext);
}
)
}
}
function echartsCloud(){ $.ajax({
url:"getmax",
type:"POST",
dataType:"JSON",
async:true,
success:function(data)
{
var mydata = new Array(0); for(var i=0;i<data.length;i++)
{
var d = { };
d["name"] = data[i].name;//.substring(0, 2);
d["value"] = data[i].value;
mydata.push(d);
}
var myChart = echarts.init(document.getElementById('main'));
//设置点击效果
var ecConfig = echarts.config;
myChart.on('click', eConsole); myChart.setOption({
title: {
text: ''
},
tooltip: {},
series: [{
type : 'wordCloud', //类型为字符云
shape:'smooth', //平滑
gridSize : 8, //网格尺寸
size : ['50%','50%'],
//sizeRange : [ 50, 100 ],
rotationRange : [-45, 0, 45, 90], //旋转范围
textStyle : {
normal : {
fontFamily:'微软雅黑',
color: function() {
return 'rgb(' +
Math.round(Math.random() * 255) +
', ' + Math.round(Math.random() * 255) +
', ' + Math.round(Math.random() * 255) + ')'
}
},
emphasis : {
shadowBlur : 5, //阴影距离
shadowColor : '#333' //阴影颜色
}
},
left: 'center',
top: 'center',
right: null,
bottom: null,
width:'100%',
height:'100%',
data:mydata
}]
});
}
});
}
</script>
</body>
</html>

CVPR2018关键字分析生成词云图与查找的更多相关文章

  1. Python模块---Wordcloud生成词云图

    wordcloud是Python扩展库中一种将词语用图片表达出来的一种形式,通过词云生成的图片,我们可以更加直观的看出某篇文章的故事梗概. 首先贴出一张词云图(以哈利波特小说为例): 在生成词云图之前 ...

  2. python根据文本生成词云图

    python根据文本生成词云图 效果 代码 from wordcloud import WordCloud import codecs import jieba #import jieba.analy ...

  3. python 爬取豆瓣电影短评并wordcloud生成词云图

    最近学到数据可视化到了词云图,正好学到爬虫,各种爬网站 [实验名称] 爬取豆瓣电影<千与千寻>的评论并生成词云 1. 利用爬虫获得电影评论的文本数据 2. 处理文本数据生成词云图 第一步, ...

  4. Excel催化剂开源第27波-Excel离线生成词云图

    在数据分析领域,词云图已经成为在文本分析中装逼的首选图表,大家热烈地讨论如何在Python上做数据分析.做词云图. 数据分析从来都是Excel的主战场,能够让普通用户使用上的技术才是最有价值的技术,一 ...

  5. 已知词频生成词云图(数据库到生成词云)--generate_from_frequencies(WordCloud)

    词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_f ...

  6. 小白学Python(12)——pyecharts ,生成词云图 WordCloud

    WordCloud(词云图) from pyecharts import options as opts from pyecharts.charts import Page, WordCloud fr ...

  7. Python爬虫b站视频弹幕并生成词云图分析

    爬虫:requests,beautifulsoup 词云:wordcloud,jieba 代码加注释: # -*- coding: utf-8 -*- import xlrd#读取excel impo ...

  8. 微信聊天记录导出为csv,并生成词云图

    微信聊天记录生成特定图片图云 首先贴上github地址 https://github.com/ghdefe/WechatRecordToWordCloud 来个效果图 提取聊天记录到csv参考教程 h ...

  9. 【爬虫+情感判定+Top10高频词+词云图】“谷爱凌”热门弹幕python舆情分析

    一.背景介绍 最近几天,谷爱凌在冬奥会赛场上夺得一枚宝贵的金牌,为中国队贡献了自己的荣誉! 针对此热门事件,我用Python的爬虫和情感分析技术,针对小破站的弹幕数据,分析了众网友弹幕的舆论导向,下面 ...

随机推荐

  1. tf.slice()函数详解(极详细)

    目录 1.官方注释 2.参数解释 3.例子 参考 @(tf.slice()函数详解 ) tf.slice()是TensorFlow库中分割张量的一个函数,其定义为def slice(input_, b ...

  2. 计算广告中的CPM和eCPM

    计算广告中的CPM和eCPM CPM和eCPM分别是什么? CPM(Cost per Mille ) : 千次展示付费.是针对广告主说的,你要花多少钱,购买一千次广告展示的机会.类似的还有CPC (C ...

  3. Python3学习之路~9.3 GIL、线程锁之Lock\Rlock\信号量、Event

    一 Python GIL(Global Interpreter Lock) 全局解释器锁 如果一个主机是单核,此时同时启动10个线程,由于CPU执行了上下文的切换,让我们宏观上看上去它们是并行的,但实 ...

  4. Journal of Proteome Research | Lipidomics reveals similar changes in serum phospholipid signatures of overweight and obese paediatric subjects (分享人:赵倩倩)

    文献名:Lipidomics reveals similar changes in serum phospholipid signatures of overweight and obese paed ...

  5. 论文速递 | 实例分割算法BlendMask,实时又state-of-the-art

    BlendMask通过更合理的blender模块融合top-level和low-level的语义信息来提取更准确的实例分割特征,该模型效果达到state-of-the-art,但结构十分精简,推理速度 ...

  6. 解决vscode 没有 c++11 的代码提示(如to_string()等)

    2019.5.4 更新: 参考了stackflow上的一个问题:to_string is not a member of std, says g++ (mingw),发现直接换新版mingw即可- m ...

  7. VirtualBox 安装 Centos8 使用 Xshell 连接

    1.下载CentOS CentOS下载地址:https://wiki.centos.org/Download 这里选择本地安装包,网络安装包在安装时需要在线下载资源比较慢 2.安装VirtualBox ...

  8. 两片74门实现的双边沿D触发器

    最近一个项目需要时钟上升沿和下降沿都可以触发的D触发器,但并没有找到符合要求的商品IC.也去看了一些文献,但都是给的示意图然后用分立元件实现的(应该是准备做成IC).这里给出一种最少2个IC就能搭出来 ...

  9. [BFS]Codeforces Igor In the Museum

     Igor In the Museum time limit per test 1 second memory limit per test 256 megabytes input standard ...

  10. Hive数据倾斜的原因及主要解决方法

    数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些 ...