大多数示例使用手写数字的MNIST数据集[^1]。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。为简单起见,每个图像都被平展并转换为784(28 * 28)个特征的一维numpy数组。

概览

用法

在我们的示例中,我们使用TensorFlow input_data.py脚本来加载该数据集。

它对于管理我们的数据非常有用,并且可以处理:

  • 加载数据集
  • 将整个数据集加载到numpy数组中
# 导入 MNIST
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # 加载数据
X_train = mnist.train.images
Y_train = mnist.train.labels
X_test = mnist.test.images
Y_test = mnist.test.labels
  • next_batch函数,可以遍历整个数据集并仅返回所需的数据集样本部分(以节省内存并避免加载整个数据集)。
# 获取接下来的64个图像数组和标签
batch_X, batch_Y = mnist.train.next_batch(64)

[^1]: http://yann.lecun.com/exdb/mnist/

欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/

MNIST数据集介绍的更多相关文章

  1. MNIST 数据集介绍

    在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个:     MNIST数据库 ...

  2. Windows下mnist数据集caffemodel分类模型训练及测试

    1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...

  3. Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)

    基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caf ...

  4. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  5. 使用libsvm对MNIST数据集进行实验

    使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...

  6. mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同

    有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/ ...

  7. RNN入门(一)识别MNIST数据集

    RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Netwo ...

  8. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

  9. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

随机推荐

  1. C++中如何对单向链表操作

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  2. C++走向远洋——51(数组类运算的实现)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  3. JavaScript学习总结之数组常用的方法和属性

    先点赞后关注,防止会迷路寄语:没有一个冬天不会过去,没有一个春天不会到来. 前言数组常用的属性和方法常用属性返回数组的大小常用方法栈方法队列方法重排序方法操作方法转换方法迭代方法归并方法总结结尾 前言 ...

  4. Vue-API之全局配置

    API 全局配置 Vue.config 是一个对象,包含 Vue 的全局配置. 源码位置:util/config.js 搜索config 可以找到其源码地址,其中声明了config的类型和默认参数 下 ...

  5. 【阿里云IoT+YF3300】16.云端一体化,天猫精灵操控YF3300

    “你好天猫精灵”,“主人有什么吩咐”,“打开灯”,“好的,灯已打开”.对于这样的对话应该大多数人都很熟悉,这就是智能家居的缩影.对于现在市面上层出不穷的智能家居系统,功能越来越繁杂,可是因为开发难度高 ...

  6. 简单说 用CSS做一个魔方旋转的效果

    说明 魔方大家应该是不会陌生的,这次我们来一起用CSS实现一个魔方旋转的特效,先来看看效果图! 解释 我们要做这样的效果,重点在于怎么把6张图片,摆放成魔方的样子,而把它们摆放成魔方的样子,重点在于用 ...

  7. 关于Spring和SpringMVC的总结

    1.Spring中AOP的应用场景.AOP原理.好处? 答:AOP:Aspect Oriented Programming面向切面编程:用来封装横切关注点,具体可以在下面场景中使用: Authenti ...

  8. Python入门的三大问题和三大谎言

    Python广告,铺天盖地,小白们雾里看花,Python无限美好.作为会20几种语言(BASIC Foxbase/pro VB VC C C++ c# js typescript HTML Ardui ...

  9. ES6的函数

    1,带参数默认值的函数 JS函数有个独特的行为:可以接受任意数量的参数,而无视函数声明的形参数量.未提供的参数会使用默认值来代替.实际传递的参数允许少于或多于正式指定的参数. 在ES6中可以直接在形参 ...

  10. 修改js文件,引发的404问题

    记录一个bug,本地测不出来,客户后台却404,web测试可参考.(不知道是不是通用的) 先介绍下背景 我们是web产品,存在发布机.管理机.js文件,页面会引用到这些js文件.出于安全考虑,规定js ...