MNIST数据集介绍
大多数示例使用手写数字的MNIST数据集[^1]。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。为简单起见,每个图像都被平展并转换为784(28 * 28)个特征的一维numpy数组。
概览
用法
在我们的示例中,我们使用TensorFlow input_data.py脚本来加载该数据集。
它对于管理我们的数据非常有用,并且可以处理:
- 加载数据集
- 将整个数据集加载到numpy数组中
# 导入 MNIST
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# 加载数据
X_train = mnist.train.images
Y_train = mnist.train.labels
X_test = mnist.test.images
Y_test = mnist.test.labels
next_batch
函数,可以遍历整个数据集并仅返回所需的数据集样本部分(以节省内存并避免加载整个数据集)。
# 获取接下来的64个图像数组和标签
batch_X, batch_Y = mnist.train.next_batch(64)
[^1]: http://yann.lecun.com/exdb/mnist/
欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/
MNIST数据集介绍的更多相关文章
- MNIST 数据集介绍
在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个: MNIST数据库 ...
- Windows下mnist数据集caffemodel分类模型训练及测试
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...
- Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caf ...
- 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...
- 使用libsvm对MNIST数据集进行实验
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...
- mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同
有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/ ...
- RNN入门(一)识别MNIST数据集
RNN介绍 在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Netwo ...
- 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
随机推荐
- 2020年JAVA大厂笔经面经
个人简介 Java后台开发方向. 非计算机专业硕士,专业涉及到一些开发. 实验室项目主要是Java Web系统,挖掘小亮点. 无实习经验. 闲话唠嗑 回顾这几个月,宛若梦一场. 一开始心态不好 ...
- cssy元素居中的方法有哪些?
css的元素居中 各位小伙伴们在努力写网页的时候有没有遇到过这样的一个问题呢? 在写的时候发现他不居中,可是要分分钟逼死强迫症的啊! 别急,我来啦 哈哈哈 今天就带来三种css的元素居中的方法 第一种 ...
- redis01
1.redis 1)cookie与session session本质上也是cookie,cookie携带session返回给服务端 redis是一个存储数据库 redis读写快速,使用简单,常用于存储 ...
- es6中的属性名表达式
代码如下: 问题: 为什么我可以这样给obj1对象添加动态属性? 为什么我最终的结果是只添加了right属性? 解答: 1. 第一个问题解答如下: 我们知道在es5中给对象添加属性有两种方法,一种是通 ...
- hadoop HDFS完全分布式搭建
1.准备阶段 准备好两台虚拟机(安装好hadoop,见:https://www.cnblogs.com/cjq10029/p/12336446.html),计划: IP 主机名 192.168.3.7 ...
- CyclicBarrier源码探究 (JDK 1.8)
CyclicBarrier也叫回环栅栏,能够实现让一组线程运行到栅栏处并阻塞,等到所有线程都到达栅栏时再一起执行的功能."回环"意味着CyclicBarrier可以多次重复使用,相 ...
- ggplot2(4) 用图层构建图像
4.1 简介 qplot()的局限性在于它只能使用一个数据集和一组图形属性映射,解决这个问题的办法就是使用图层.每个图层可以有自己的数据集和图形属性映射,附加的数据元素可通过图层添加到图形中. 一个图 ...
- 机器学习实用案例解析(1) 使用R语言
简介 统计学一直在研究如何从数据中得到可解释的东西,而机器学习则关注如何将数据变成一些实用的东西.对两者做出如下对比更有助于理解“机器学习”这个术语:机器学习研究的内容是教给计算机一些知识,再让计算机 ...
- Spring中的JdbcTemplate的使用
一.jdbcTemplate的作用 它就是用于和数据库交互的,实现对表的crud.与dbutils相似 二.JdbcTemplate的使用 <dependency> <groupId ...
- 【Weiss】【第03章】练习3.16:删除相同元素
[练习3.16] 假设我们有一个基于数组的表A[0,1...N-1],并且我们想删除所有相同的元素. LastPosition初始值为N-1,但应该随着相同元素被删除而变得越来越小. 考虑图3-61中 ...