MNIST数据集介绍
大多数示例使用手写数字的MNIST数据集[^1]。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1。为简单起见,每个图像都被平展并转换为784(28 * 28)个特征的一维numpy数组。
概览

用法
在我们的示例中,我们使用TensorFlow input_data.py脚本来加载该数据集。
它对于管理我们的数据非常有用,并且可以处理:
- 加载数据集
- 将整个数据集加载到numpy数组中
# 导入 MNIST
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# 加载数据
X_train = mnist.train.images
Y_train = mnist.train.labels
X_test = mnist.test.images
Y_test = mnist.test.labels
next_batch函数,可以遍历整个数据集并仅返回所需的数据集样本部分(以节省内存并避免加载整个数据集)。
# 获取接下来的64个图像数组和标签
batch_X, batch_Y = mnist.train.next_batch(64)
[^1]: http://yann.lecun.com/exdb/mnist/
欢迎关注磐创博客资源汇总站:http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:http://pytorch.panchuang.net/
MNIST数据集介绍的更多相关文章
- MNIST 数据集介绍
在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个: MNIST数据库 ...
- Windows下mnist数据集caffemodel分类模型训练及测试
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和1000 ...
- Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caf ...
- 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...
- 使用libsvm对MNIST数据集进行实验
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libs ...
- mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同
有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/ ...
- RNN入门(一)识别MNIST数据集
RNN介绍 在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Netwo ...
- 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...
- 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...
随机推荐
- C++走向远洋——46(教师兼干部类、多重继承、派生)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- 【5min+】保持程序健康的秘诀!AspNetCore的HealthCheck
系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...
- sql--自链接(推荐人)
表1: 需求:查出推荐人,和被推荐人 1.通过group_concat函数和分组,查出每个id推荐的人有哪些 select group_concat(u_name, u_id) as referce_ ...
- springboot配置文件读取pom文件信息
解决的问题 springboot(当然别的也可以)多环境切换需要该配置文件,打包时不够方便. 解决: 配置文件能读取pom文件中的配置,根据命令选择不同配置注入springboot的配置文件中 pom ...
- mysql in与exists区别
1.exists是对外表做loop循环,每次loop循环再对内表(子查询)进行查询,那么因为对内表的查询使用的索引(内表效率高,故可用大表),而外表有多大都需要遍历,不可避免(尽量用小表),故内表大的 ...
- 【布局】圣杯布局&双飞翼布局
背景 随着前端技术的发展推进,web端的布局方式已基本成熟,那么在网站布局方式中,三列布局最为常用,布局方式也有很多,渐渐的开发者们开始从效率的角度优化自己的代码"如果三排布局能将中间的模块 ...
- 前端小姐姐学PHP之(二)
上次了我们配置好开发环境了,本小节主要讲述内容点: phpStrom的运行环境配置 创建数据库.数据表 连接数据库 一.phpStrom的运行环境配置(windows版) 注:MAC版原文地址 htt ...
- 无刷新上传图片,ajax 和 iframe
iframe 上传 upload.html 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ...
- Druid未授权(弱口令)的一些利用方式
Druid简介 1.Druid是阿里巴巴数据库事业部出品,为监控而生的数据库连接池. 2.Druid提供的监控功能,监控SQL的执行时间.监控Web URI的请求.Session监控. Druid可能 ...
- Python数据基本类型3
-*- coding:utf-8 -*-字典 键值对数据 dict dic = {'键':'值'}存储数据 字典的查找快一些不可哈希的,就是可变的数据 可变的数据不能哈希 不可变的数据能哈希 pyth ...