不多扯题目 直接题解= =

1.递归

由题目可以得知,子树既可以是根节点和叶节点组成,也可以是一个节点,题意中的对称二叉子树是必须由一个根节点一直到树的最底部所组成的树。

这样一来就简单了,我们很容易就能想到用递归的方法

1.枚举根节点,判断其左右两个孩子节点 是否存在 以及是否相等. 若存在并且点权相等,则一直递归左右两个孩子节点左右两个孩子节点 .

重复上述判断。

2.判断好对称二叉树后,就可以计算以该节点为根节点的对称二叉子树的节点数量并取最优值了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 1e6 + 10;//习惯性用定义法 当然也可以用const
int v[N], l[N], r[N];
//v[i]:节点i权值;l[i]:编号为i的节点的左孩子的编号;r[i]:编号为i的节点的右孩子的编号
int n,ans = ;
bool pd; //判断是否为对称二叉子树
int cnt(int x) { //计算以x为根节点的对称二叉子树的节点数
int sum ;
if (l[x]!=-) sum+=cnt(l[x]);
if (r[x]!=-) sum+=cnt(r[x]);
return sum+; //算上根节点
} void check(int x, int y) { //判断对称二叉子树
if (x==-&&y==-) return ; //到底了 结束
if (x==-||y==-||v[x]!=v[y]) { //不对称
pd = false;
return;
}
check(l[x], r[y]);
check(r[x], l[y]);
} int main() {
cin>>n;
for (int i=;i<=n;++i)
cin>>v[i];
for (int i=;i<=n;++i)
cin>>l[i]>>r[i];
ans = ; //至少有一个对称(一个节点)
for(int i=; i<=n;++i) {//枚举对称二叉子树的根节点
if (l[i]!=-&&r[i]!=-&&v[l[i]]==v[r[i]]){
pd=true; //先默认为是对称二叉子树
check(l[i], r[i]);
if (pd)
ans=max(ans, cnt(i)); //如果是对称二叉子树就可以计算节点数取最大值了
}
}
cout<<ans;
return ;
}
check(l[x],r[y]);
check(r[x],l[y]);

判断对称二叉子树时,应该是镜面对称的

所以在check时直接镜面对称即可

2dfs

如果一个二叉树是对称的,那么对于深度相同的两个节点u,v,必定有lson(u)lson(u)与rson(v)rson(v),rson(u)rson(u)与lson(v)lson(v),并且val_u=val_v:

int read()
{
int x=0,f=1;
char ch=getchar();
while('0'>ch||'9'<ch){
if (ch=='-')
f=-1;
ch=getchar();
}//判断正负
while('0'<=ch<='9'){
x=x*10+ch-48;
ch=getchar();
}//纯数字相加
return x*f;
}
int n,son[1000050][2],val[1000050],size[1000050];
//son[i][0]为i的左儿子
//son[i][1]为i的右儿子
void dfs(int u) //分别从左右扫一遍
{
size[u]=1;
if(son[u][0]!=-1)
{
dfs(son[u][0]);
size[u]+=size[son[u][0]];//size进入下一步dfs前先把当前状态改变
}
if (son[u][1]!=-1)
{
dfs(son[u][1]);
size[u]+=size[son[u][1]];
}
}

bool check(int u,int v)
{
if (u==-1&&v==-1)//特判
return true;
if (u!=-1&&v!=-1&&val[u]==val[v]&&check(son[u][0],son[v][1])&&check(son[u][1],son[v][0]))
return true;
return false;
}

int main()
{
n=read();
for (int i=1;i<=n;i++)
val[i]=read();
for (int i=1;i<=n;i++)
{
son[i][0]=read();
son[i][1]=read();
}
dfs(1);
int ans=0;
for (int i=1;i<=n;i++)
if(check(son[i][0],son[i][1]))
ans=max(ans,size[i]);
cout<<ans<<endl;
return 0;
}

然而我觉得这个近乎爆搜的打法还不如递归好使而且对我来说还挺难想= =

3.hash

可以直接hash树的形态,即分中序遍历1(先进左子树)和中序遍历2(先进右子树)记录hash值,对于每一个节点,若是此节点的左儿子的中序遍历1的hash值等于右儿子的中序遍历2的hash值,说明这个点为根的树是对称的(然而我用递归通过的= =所以hash就没打代码= =)

洛谷P5018 对称二叉树的更多相关文章

  1. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  2. NOIP2018普及T4暨洛谷P5018 对称二叉树题解

    题目链接:https://www.luogu.org/problemnew/show/P5018 花絮:这道题真的比历年的t4都简单的多呀,而且本蒟蒻做得出t4做不出t3呜呜呜... 这道题可以是一只 ...

  3. 洛谷 P5018 对称二叉树(搜索)

    嗯... 题目链接:https://www.luogu.org/problem/P5018 其实这道题直接搜索就可以搜满分: 首先递归把每个点作为根节点的儿子的数量初始化出来,然后看这个节点作为根节点 ...

  4. 【洛谷P5018 对称二叉树】

    话说这图也太大了吧 这题十分的简单,我们可以用两个指针指向左右两个对称的东西,然后比较就行了 复杂度O(n*logn) #include<bits/stdc++.h> using name ...

  5. 洛谷 P5018 对称二叉树

    题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...

  6. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  7. 【洛谷P5018】对称二叉树

    题目大意:定义对称二叉树为每个节点的左右子树交换后与原二叉树仍同构的二叉树,求给定的二叉树的最大对称二叉子树的大小. 代码如下 #include <bits/stdc++.h> using ...

  8. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  9. [洛谷P1040] 加分二叉树

    洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...

随机推荐

  1. 01-启动jmeter目录功能

    1.bin :存储了jmeter的可执行程序,如启动脚本.配置程序 docs:    api扩展文档存放 lib:   lib\ext   存储了jmeter的整合的功能(如.jar文件程序,和第三方 ...

  2. coding 注意事项(总结中)

    Uber Go 语言代码风格指南可以参考下:https://www.cnblogs.com/ricklz/p/11670932.html 最近写代码,老是被吐槽,代码写的不好,细节处理的不好. 那么下 ...

  3. Java入门系列之线程池ThreadPoolExecutor原理分析思考(十五)

    前言 关于线程池原理分析请参看<http://objcoding.com/2019/04/25/threadpool-running/>,建议对原理不太了解的童鞋先看下此文然后再来看本文, ...

  4. 关于在React中 报Super expression must either be null or a function, not undefined (采坑系列)

    今天突然在联系React中遇到一开始就报    Super expression must either be null or a function, not undefined 百度,各种方法,.. ...

  5. 2019-05-12 Python之模拟体育竞赛

    一.简介 可以选择任意规则,模拟不同的两个队伍进行球赛的模拟比赛 二.源代码 函数介绍: from random import * #输出介绍信息 def printIntro(): print(&q ...

  6. Python 分析后告诉你闲鱼上哪些商品抢手?

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:[Airpython] PS:如有需要Python学习资料的小伙伴可以 ...

  7. Oracle计算数值型的幂次方——POWER()

    Oracle计算数值型的幂次方 简介:幂次方就是幂函数的变形,在POWER(value1,value2)中,value1就是函数的底数,value2就是函数的指数.如:POWER(value1,val ...

  8. HTML+CSS教程(五)外联样式、组选择器、圆角边框、样式优先级、伪类、盒子模型、元素溢出

    一.外联样式 通过link标签引入外部css文件夹中的xxx.css文件到head标签中 例: 二. 1.组选择器 选择器名称1,选择器名称2,选择器名称3,…{属性:属性值;属性;属性值} 例: & ...

  9. SVM家族(一)

    SVM家族简史 故事要从20世纪50年代说起,1957年,一个叫做感知器的模型被提出, 1963年, Vapnikand Chervonenkis, 提出了最大间隔分类器,SVM诞生了. 1992年, ...

  10. OAuth-授权机制

    一.应用场景 有一个"云冲印"的网站,可以将用户储存在Google的照片,冲印出来.用户为了使用该服务,必须让"云冲印"读取自己储存在Google上的照片. 问 ...