不多扯题目 直接题解= =

1.递归

由题目可以得知,子树既可以是根节点和叶节点组成,也可以是一个节点,题意中的对称二叉子树是必须由一个根节点一直到树的最底部所组成的树。

这样一来就简单了,我们很容易就能想到用递归的方法

1.枚举根节点,判断其左右两个孩子节点 是否存在 以及是否相等. 若存在并且点权相等,则一直递归左右两个孩子节点左右两个孩子节点 .

重复上述判断。

2.判断好对称二叉树后,就可以计算以该节点为根节点的对称二叉子树的节点数量并取最优值了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 1e6 + 10;//习惯性用定义法 当然也可以用const
int v[N], l[N], r[N];
//v[i]:节点i权值;l[i]:编号为i的节点的左孩子的编号;r[i]:编号为i的节点的右孩子的编号
int n,ans = ;
bool pd; //判断是否为对称二叉子树
int cnt(int x) { //计算以x为根节点的对称二叉子树的节点数
int sum ;
if (l[x]!=-) sum+=cnt(l[x]);
if (r[x]!=-) sum+=cnt(r[x]);
return sum+; //算上根节点
} void check(int x, int y) { //判断对称二叉子树
if (x==-&&y==-) return ; //到底了 结束
if (x==-||y==-||v[x]!=v[y]) { //不对称
pd = false;
return;
}
check(l[x], r[y]);
check(r[x], l[y]);
} int main() {
cin>>n;
for (int i=;i<=n;++i)
cin>>v[i];
for (int i=;i<=n;++i)
cin>>l[i]>>r[i];
ans = ; //至少有一个对称(一个节点)
for(int i=; i<=n;++i) {//枚举对称二叉子树的根节点
if (l[i]!=-&&r[i]!=-&&v[l[i]]==v[r[i]]){
pd=true; //先默认为是对称二叉子树
check(l[i], r[i]);
if (pd)
ans=max(ans, cnt(i)); //如果是对称二叉子树就可以计算节点数取最大值了
}
}
cout<<ans;
return ;
}
check(l[x],r[y]);
check(r[x],l[y]);

判断对称二叉子树时,应该是镜面对称的

所以在check时直接镜面对称即可

2dfs

如果一个二叉树是对称的,那么对于深度相同的两个节点u,v,必定有lson(u)lson(u)与rson(v)rson(v),rson(u)rson(u)与lson(v)lson(v),并且val_u=val_v:

int read()
{
int x=0,f=1;
char ch=getchar();
while('0'>ch||'9'<ch){
if (ch=='-')
f=-1;
ch=getchar();
}//判断正负
while('0'<=ch<='9'){
x=x*10+ch-48;
ch=getchar();
}//纯数字相加
return x*f;
}
int n,son[1000050][2],val[1000050],size[1000050];
//son[i][0]为i的左儿子
//son[i][1]为i的右儿子
void dfs(int u) //分别从左右扫一遍
{
size[u]=1;
if(son[u][0]!=-1)
{
dfs(son[u][0]);
size[u]+=size[son[u][0]];//size进入下一步dfs前先把当前状态改变
}
if (son[u][1]!=-1)
{
dfs(son[u][1]);
size[u]+=size[son[u][1]];
}
}

bool check(int u,int v)
{
if (u==-1&&v==-1)//特判
return true;
if (u!=-1&&v!=-1&&val[u]==val[v]&&check(son[u][0],son[v][1])&&check(son[u][1],son[v][0]))
return true;
return false;
}

int main()
{
n=read();
for (int i=1;i<=n;i++)
val[i]=read();
for (int i=1;i<=n;i++)
{
son[i][0]=read();
son[i][1]=read();
}
dfs(1);
int ans=0;
for (int i=1;i<=n;i++)
if(check(son[i][0],son[i][1]))
ans=max(ans,size[i]);
cout<<ans<<endl;
return 0;
}

然而我觉得这个近乎爆搜的打法还不如递归好使而且对我来说还挺难想= =

3.hash

可以直接hash树的形态,即分中序遍历1(先进左子树)和中序遍历2(先进右子树)记录hash值,对于每一个节点,若是此节点的左儿子的中序遍历1的hash值等于右儿子的中序遍历2的hash值,说明这个点为根的树是对称的(然而我用递归通过的= =所以hash就没打代码= =)

洛谷P5018 对称二叉树的更多相关文章

  1. 洛谷P5018 对称二叉树——hash

    给一手链接 https://www.luogu.com.cn/problem/P5018 这道题其实就是用hash水过去的,我们维护两个hash 一个是先左子树后右子树的h1 一个是先右子树后左子树的 ...

  2. NOIP2018普及T4暨洛谷P5018 对称二叉树题解

    题目链接:https://www.luogu.org/problemnew/show/P5018 花絮:这道题真的比历年的t4都简单的多呀,而且本蒟蒻做得出t4做不出t3呜呜呜... 这道题可以是一只 ...

  3. 洛谷 P5018 对称二叉树(搜索)

    嗯... 题目链接:https://www.luogu.org/problem/P5018 其实这道题直接搜索就可以搜满分: 首先递归把每个点作为根节点的儿子的数量初始化出来,然后看这个节点作为根节点 ...

  4. 【洛谷P5018 对称二叉树】

    话说这图也太大了吧 这题十分的简单,我们可以用两个指针指向左右两个对称的东西,然后比较就行了 复杂度O(n*logn) #include<bits/stdc++.h> using name ...

  5. 洛谷 P5018 对称二叉树

    题目传送门 解题思路: 先计算每个点的子树有多少节点,然后判断每个子树是不是对称的,更新答案. AC代码: #include<iostream> #include<cstdio> ...

  6. 2021.08.09 P5018 对称二叉树(树形结构)

    2021.08.09 P5018 对称二叉树(树形结构) [P5018 NOIP2018 普及组] 对称二叉树 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 求一棵子树,关 ...

  7. 【洛谷P5018】对称二叉树

    题目大意:定义对称二叉树为每个节点的左右子树交换后与原二叉树仍同构的二叉树,求给定的二叉树的最大对称二叉子树的大小. 代码如下 #include <bits/stdc++.h> using ...

  8. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  9. [洛谷P1040] 加分二叉树

    洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...

随机推荐

  1. PAT 链表倒序的算法优化

    之前的答案错误问题已经解决了,现在还有运行超时的问题,先贴上之前的代码 1 #include <iostream> 2 #include <string.h> 3 using ...

  2. 搭建react项目(低配版)

    react项目低配版,可作为react相关测试的基础环境,方便快速进行测试. git clone git@github.com:whosMeya/simple-react-app.git git ch ...

  3. 数据结构和算法(Golang实现)(10)基础知识-算法复杂度主方法

    算法复杂度主方法 有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来. 一.复杂度主方法 主方法,也可以叫主定理.对于那些用分治法 ...

  4. 表字段或表名出现Mysql关键字或保留字导致问题 Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have

    MySQL 5.7使用的关键字和保留字 https://dev.mysql.com/doc/refman/5.7/en/keywords.html 当我们建表的时候如果使用了关键字或者保留字,则在执行 ...

  5. undefined 和 not defined

    概念上的解释: undefined是javascript语言中定义的五个原始类中的一个,换句话说,undefined并不是程序报错,而是程序允许的一个值. not defined是javascript ...

  6. 高德APP启动耗时剖析与优化实践(iOS篇)

    前言最近高德地图APP完成了一次启动优化专项,超预期将双端启动的耗时都降低了65%以上,iOS在iPhone7上速度达到了400毫秒以内.就像产品们用后说的,快到不习惯.算一下每天为用户省下的时间,还 ...

  7. asp.net mvc 接收jquery ajax发送的数组对象

    <script type="text/javascript"> $(function () { var obj = { name: "军需品", m ...

  8. JS 中的自定义事件和模拟事件

    在 JS 中模拟事件指的是模拟 JS 中定义的一些事件,例如点击事件,键盘事件等. 自定义事件指的是创建一个自定义的,JS 中之前没有的事件. 接下来分别说一下创建这两种事件的方法. 创建自定义事件 ...

  9. 数据结构(C语言版)---栈

    1.栈:仅在表尾进行插入和删除操作的线性表.后进先出LIFO. 1)表尾端(允许插入和删除的一端)为栈顶,表头端(不允许插入和删除的一端)为栈底. 2)入栈:插入元素的操作.出栈:删除栈顶元素 3)栈 ...

  10. 数据结构(C语言版)---二叉树

    1.二叉树:任意一个结点的子结点个数最多两个,且子结点的位置不可更改,二叉树的子树有左右之分. 1)分类:(1)一般二叉树(2)满二叉树:在不增加树的层数的前提下,无法再多添加一个结点的二叉树就是满二 ...