sk-learn实现L2岭回归,对线性回归正则化
岭回归算法:


from sklearn.datasets import load_boston
from sklearn.externals import joblib
from sklearn.linear_model import Ridge, RidgeCV
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler def liner_ridge():
'''
岭回归
:return:
''' #1.获取数据
data = load_boston() #2.数据集划分
x_train,x_test,y_train,y_test = train_test_split(data.data,data.target,random_state=20) #3.特征工程-标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test) #4.机器学习-线性回归(岭回归)
# estimator = Ridge(alpha = 1)
# estimator = RidgeCV(alphas=(0.1,1,8,5,11))
# estimator.fit(x_train,y_train)
#
# #模型保存
# joblib.dump(estimator,"./data/test.pkl") estimator = joblib.load("./data/test.pkl") #5.模型评估
#获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:",y_predict)
print("模型中的系数为:",estimator.coef_)
print("模型中的偏执为:",estimator.intercept_)
print(estimator.alpha_)
print(estimator.alphas)
#评价模型 均方误差
error = mean_squared_error(y_test,y_predict)
print("误差为:",error) if __name__ == '__main__':
liner_ridge()
sk-learn实现L2岭回归,对线性回归正则化的更多相关文章
- 机器学习--Lasso回归和岭回归
之前我们介绍了多元线性回归的原理, 又通过一个案例对多元线性回归模型进一步了解, 其中谈到自变量之间存在高度相关, 容易产生多重共线性问题, 对于多重共线性问题的解决方法有: 删除自变量, 改变数据形 ...
- 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...
- 机器学习之五 正则化的线性回归-岭回归与Lasso回归
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基 ...
- 多元线性回归模型的特征压缩:岭回归和Lasso回归
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
- 通俗易懂--岭回归(L2)、lasso回归(L1)、ElasticNet讲解(算法+案例)
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适 ...
- 机器学习入门线性回归 岭回归与Lasso回归(二)
一 线性回归(Linear Regression ) 1. 线性回归概述 回归的目的是预测数值型数据的目标值,最直接的方法就是根据输入写出一个求出目标值的计算公式,也就是所谓的回归方程,例如y = a ...
- 岭回归和Lasso回归以及norm1和norm2
norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的, ...
- 岭回归和lasso回归(转)
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值 ...
随机推荐
- nginx IF 指令
变量名可以使用"="或"!="运算符 ~ 符号表示区分大小写字母的匹配 "~*"符号表示不区分大小写字母的匹配 "!"和 ...
- [bzoj1800]fly 飞行棋<暴力>
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1800 说实话我这几天运气不错,随便在bzoj上找题都可以找到水题,这题在代码上没有丝毫难度 ...
- 各种杂记关于Linux
修改Linux 日期 修改Linux时间
- CAS / ABA
CAS / ABA 标签(空格分隔): 操作系统 1. CAS 解决 Volatile 不保证原子性的问题 /** * Atomically increments by one the current ...
- spring官方为什么放弃spring social项目及替代方案
spring social 1.6之后官方不在维护该项目, spring boot 2.x之后也不在提供spring social的 Autoconfiguration. 原因: https://sp ...
- Flask 入门(特别篇)
作为一款优秀的编辑器,pycharm得到了很多人的支持,但是刚接触它的小伙伴会遇到一个困难,如何把一个别人做的python项目导入到pycharm里面呢? 1.手动建立一个虚拟环境,注意这个环境和你导 ...
- 汇编刷题:统计2000H开始的正负数的个数
DATA SEGMENT ORG 2000H INFO DB 1,2,3,4,5,70H,71H,72H,80H,92H N_NUMS DB 00H P_NUMS DB 00H DATA ENDS C ...
- Array(数组)对象-->slice() 方法
1.定义和用法 slice()方法可提取字符串的某个部分,并以新的字符串返回被提取的部分. 语法: array.slice(start, end) 参数:start 开始元素的下标,截取内容包含该元素 ...
- Python操作rabbitmq系列(二):多个接收端消费消息
今天,我们要逐步开始讨论rabbitmq稍微高级点的耍法了.了解这一步,对我们设计高并发的系统非常有用.当然,还可以使用kafka.不过还是算了,有几个硬性条件不支持,还是用rabbitmq吧. 循环 ...
- python3(十九)Partial func
# 偏函数(Partial function) # 如int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换 # 但int()函数还提供额外的base参数,默认值为10 ...