Description

题库连接

给你一个 \(n\) 个节点的有向树,问你这棵树的拓扑序个数,对大质数取模。多测,测试组数 \(T\)。

\(1\leq n\leq 1000, 1\leq T\leq 5\)

Solution

以 1 为根。记 \(f_{u,i}\) 表示 \(u\) 为根的子树中 \(u\) 的拓扑序号为 \(i\) 时的方案数。

从儿子 \(v\) 向父亲 \(u\) 转移时,考虑 \((u,v)\) 的方向。以 \(u\rightarrow v\) 为例。

枚举 \(u\) 的拓扑序号 \(i\),\(v\) 的拓扑序 \(j\)。那么 \(u,v\) 的分别的原排列如图示(\(A,B\) 为原先在 \(u\) 前/后的部分,\(C,D\) 同理),

\[
\begin{aligned}
\underline{\quad A\quad}&\quad i\quad\underline{\quad B\quad}\\
&\ \ \ \downarrow\\
\underline{\quad C\quad}&\quad j\quad\underline{\quad D\quad}
\end{aligned}
\]

我们考虑 \(u\) 在新序列中的位置 \(k\),可以得到

\[
\text{new}f_{u,k} = \sum_{i,j}{k-1\choose i-1}{sz_u+sz_v-k\choose sz_u-i}f_{u,i}f_{v,j}
\]

其中 \(sz_u\) 表示子树 \(u\) 的大小。

容易发现 \(j\) 这一维可以前缀和优化。

故最终复杂度为 \(O(n^2)\)。

Code

#include <bits/stdc++.h>
using namespace std;
const int yzh = 1000000007, N = 1000+5; int f[N][N], sz[N], t, n, u, v, g[N], fac[N], ifac[N];
struct tt {
int to, nxt, c;//0->
} edge[N<<1];
int path[N], top;
char sign; int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
void dfs(int u, int fa) {
f[u][1] = sz[u] = 1;
for (int v, i = path[u]; i; i = edge[i].nxt)
if ((v = edge[i].to) != fa) {
dfs(v, u);
memcpy(g, f[u], sizeof(g));
memset(f[u], 0, sizeof(g));
if (edge[i].c == 0) {
for (int i = 1; i <= sz[u]; i++)
for (int k = i; k <= i+sz[v]-1; k++)
(f[u][k] += 1ll*C(k-1, i-1)*C(sz[u]+sz[v]-k, sz[u]-i)%yzh*g[i]%yzh*(f[v][sz[v]]-f[v][k-i])%yzh) %= yzh;
} else {
for (int i = 1; i <= sz[u]; i++)
for (int k = i+1; k <= i+sz[v]; k++)
(f[u][k] += 1ll*C(k-1, i-1)*C(sz[u]+sz[v]-k, sz[u]-i)%yzh*g[i]%yzh*f[v][k-i]%yzh) %= yzh;
}
sz[u] += sz[v];
}
for (int i = 1; i <= n; i++) (f[u][i] += f[u][i-1]) %= yzh;
}
void add(int u, int v, int c) {
edge[++top] = (tt){v, path[u], c};
path[u] = top;
}
int main() {
n = 1000;
ifac[0] = ifac[1] = fac[0] = 1;
for (int i = 2; i <= n; i++) ifac[i] = -1ll*yzh/i*ifac[yzh%i]%yzh;
for (int i = 1; i <= n; i++)
ifac[i] = 1ll*ifac[i]*ifac[i-1]%yzh,
fac[i] = 1ll*i*fac[i-1]%yzh;
scanf("%d", &t);
while (t--) {
scanf("%d", &n); top = 0;
for (int i = 1; i <= n; i++) {
path[i] = sz[i] = 0;
for (int j = 1; j <= n; j++) f[i][j] = 0;
}
for (int i = 1; i < n; i++) {
scanf("%d %c %d", &u, &sign, &v); ++u, ++v;
if (sign == '<') add(u, v, 0), add(v, u, 1);
else add(u, v, 1), add(v, u, 0);
}
dfs(1, 0);
printf("%d\n", (f[1][n]+yzh)%yzh);
}
return 0;
}

[HEOI 2013]SAO的更多相关文章

  1. [BZOJ 3167][HEOI 2013]SAO

    [BZOJ 3167][HEOI 2013]SAO 题意 对一个长度为 \(n\) 的排列作出 \(n-1\) 种限制, 每种限制形如 "\(x\) 在 \(y\) 之前" 或 & ...

  2. 解题:HEOI 2013 SAO

    题面 不好讲,直接上式子吧=.= 设$dp[i][j]$表示考虑完$i$的子树后$i$的排名为$j$的方案数,然后转移类似树形背包,具体来说是(这里假设子树在$i$后选,其实反过来还用这个式子答案也是 ...

  3. [HEOI 2013 day2] SAO (树形动态规划)

    题目大意 给一棵N个节点的有向树(N <= 1000),求其拓扑序列个数. 思路 我们将任意一个点作为根,用dp[i][j]表示以节点i为根的子树满足节点i在第j个位置上的拓扑序列的个数.在求节 ...

  4. 【BZOJ 3165】【HEOI 2013】Segment

    往区间上覆盖一次函数,做法是用线段树维护标记永久化. 每次都忘了线段树要4倍空间,第一次交总是RE,再这么手残的话考场上就真的要犯逗了. #include<cstdio> #include ...

  5. [HEOI 2013 day2] 钙铁锌硒维生素 (线性代数,二分图匹配)

    题目大意 给定两个n阶方阵,方阵B的行i能匹配方阵A的行j当且仅当在第一个方阵中用行向量i替换行向量j后,第一个方阵满秩,显然这是个二分图匹配问题,问是否存在完美匹配,如果存在,还要输出字典序最小的方 ...

  6. 【BZOJ 3166】【HEOI 2013】Alo

    http://www.lydsy.com/JudgeOnline/problem.php?id=3166 这道题难点在于求能对一个次大值有贡献的区间. 设这个次大值为\(a_i\),\(a_i\)左边 ...

  7. [总结]一些 DP 优化方法

    目录 注意本文未完结 写在前面 矩阵快速幂优化 前缀和优化 two-pointer 优化 决策单调性对一类 1D/1D DP 的优化 \(w(i,j)\) 只含 \(i\) 和 \(j\) 的项--单 ...

  8. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  9. SharePoint 2013: A feature with ID has already been installed in this farm

    使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...

随机推荐

  1. 题解 SP19148【INS14G - Kill them All】

    SP19148[INS14G - Kill them All] 前置知识:组合数 乘法逆元 感觉其他博客讲的不是很清楚,也没有说组合数公式是怎么来的,我这样数论极菜的萌新看了好久才想明白qwq.. 还 ...

  2. IOS上给body和html绑定click事件的坑

    场景: 在ios上(包括iPhone和ipad) 给window ,html,document,body绑定click事件,点击不会触发 由于ios浏览器都用的safari内核,所以ios浏览器全部中 ...

  3. numpy函数hstack,vstack,dstack简介

    vstack.hstack和dstack都用于把几个小数组合并成一个大数组.它们的差别是小数组的元素在大数组中的排列顺序有所不同.把两部手机摆到一起有几种方式?水平的左右排列,垂直的上下排列,还可以把 ...

  4. HDU2444 The Accomodation of Students(二分图最大匹配)

    有n个关系,他们之间某些人相互认识.这样的人有m对.你需要把人分成2组,使得每组人内部之间是相互不认识的.如果可以,就可以安排他们住宿了.安排住宿时,住在一个房间的两个人应该相互认识.最多的能有多少个 ...

  5. ztree-可拖拽可编辑的树

    <!DOCTYPE html> <HTML> <HEAD> <TITLE> ZTREE DEMO - addNodes / editName / rem ...

  6. Java数组和方法

    1. 数组可以作为方法的参数 package cn.itcast.day05.demo04; /* 数组可以作为方法的参数. 当调用方法的时候,向方法的小括号进行传参,传递进去的其实是数组的地址值. ...

  7. 微信HTTP公告

  8. JDK8;HashMap:再散列解决hash冲突 ,源码分析和分析思路

    JDK8中的HashMap相对JDK7中的HashMap做了些优化. 接下来先通过官方的英文注释探究新HashMap的散列怎么实现 先不给源码,因为直接看源码肯定会晕,那么我们先从简单的概念先讲起   ...

  9. Fluent_Python_Part4面向对象,08-ob-ref,对象引用、可变性和垃圾回收

    第四部分第8章,对象引用.可变性和垃圾回收 1. 创建对象之后才会把变量分配给对象 变量是对象的标注,是对象的别名,是对象的引用,并不是对象存储的地方. 例子1. 证明赋值语句的右边先执行 class ...

  10. 商品呢拖拽到购物车,appendChild的剪切功能

    今天来到了妙味课堂的html5课程的第2张的第8节,讲的是把商品拖拽到购物车的演示.其中有一个关于appendChild的使用,,每次拖拽都会触发这个方法,但是每次之后,却还是只有一个总价,好吧,说不 ...