BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合
比较头疼的计数题.
我们发现,放置一个棋子会使得该棋子所在的1个行和1个列都只能放同种棋子.
定义状态 $f_{i,j,k}$ 表示目前已使用了 $i$ 个行,$j$ 个列,并放置了前 $k$ 种棋子的方案数.
假设当前枚举到的是第 $k$ 个棋子,该种棋子有 $num_{k}$ 个.
枚举 $d1,d2$ 表示安排这 $num_{k}$ 个棋子需要用 $d1$ 个行,$d2$ 个列.
可以将 $d1$ 个行和 $d2$ 个列并到一起,这就构成了一个 $d1\times d2$ 的矩形.
在这个矩形中要选取 $num_{k}$ 个棋子,且 $d1$ 个行和 $d2$ 个列中每一个行和列都至少要有一个棋子.
我们像要求这个东西的方案数.
分析到这步就卡住了,我想的递推式不够优秀.
同届神犇 $JZYshurak$ 给了一个容斥的解决方案 :
令 $g_{i,j,k}$ 表示在 $i\times j$ 的矩阵中安放第 $k$ 种颜色,且每个行和列都有棋子的方案数.
正着求不好求,考虑容斥:$C_{i\times j}^{num_{k}}-\sum_{x=1}^{i}\sum_{y=1}^{j}C_{i}^{x}\times C_{j}^{y}\times g_{x,y,k}$.
这个容斥的意义: 总的方案 - 不合法方案.
那么不合法方案就是 $num_{k}$ 个棋子覆盖的行和列都小于 $i$ 与 $j$ 的方案总和,还要乘一下组合数,因为矩形是我们拼凑的,实际中这个矩形的行和列都是散落的.
综上,$f_{i,j,k}=f_{i-d1,j-d2,k-1}\times C_{n-i+d1}^{d1}\times C_{m-j+d2}^{d2}\times g_{d1,d2,k}$.
时间复杂度为 $O(cn^2m^2)$
#include <cstdio>
#include <algorithm>
#define N 33
#define mod 1000000009
#define ll long long
#define setIO(s) freopen(s".in" , "r" , stdin)
using namespace std;
int num[N], n , m, c;
ll f[N][N][13], fac[1000], inv[1000], G[N][N][10];
inline ll qpow(ll base, ll k)
{
ll tmp = 1ll;
for( ; k ; base = (base * base) % mod , k >>= 1) if(k & 1) tmp = (tmp * base) % mod;
return tmp;
}
inline ll C(int a, int b)
{
return fac[a] * inv[b] % mod * inv[a - b] % mod;
}
inline void init()
{
int i , j;
f[0][0][0] = 1ll;
fac[0] = inv[0] = 1;
for(i = 1; i <= n * m ; ++ i)
{
fac[i] = (fac[i - 1] * i) % mod ;
inv[i] = qpow(fac[i] , mod - 2);
}
}
inline void Getg()
{
int i , j , k , x, y;
for(k = 1; k <= c; ++ k)
{
for(i = 1; i <= n ; ++ i)
{
for(j = 1; j <= m ; ++ j)
{
if(i * j < num[k]) continue;
G[i][j][k] = C(i * j , num[k]);
for(x = 1; x <= i ; ++ x)
{
for(y = 1; y <= j ; ++ y)
{
if(x * y < num[k] || (x == i && y == j)) continue;
G[i][j][k] = (G[i][j][k] - (C(i, x) * C(j, y) % mod * G[x][y][k] % mod) + mod) % mod;
}
}
}
}
}
}
inline int up(int a, int b)
{
if(a % b == 0) return a / b;
else return (a / b) + 1;
}
int main()
{
int i , j , k;
ll re = 0;
scanf("%d%d%d",&n , &m , &c);
for(i = 1; i <= c ; ++ i) scanf("%d", &num[i]);
init(), Getg();
for(k = 1; k <= c ; ++ k)
{
for(i = 1; i <= n ; ++ i)
for(j = 1; j <= m ; ++ j)
{
int d1, d2;
for(d1 = 1; d1 <= num[k]; ++ d1)
{
if(d1 > i) break;
for(d2 = up(num[k], d1); d2 <= num[k]; ++ d2)
{
if(d2 > j) break;
ll t = f[i - d1][j - d2][k - 1] * C(n - i + d1, d1) % mod * C(m - j + d2, d2) % mod * G[d1][d2][k] % mod;
f[i][j][k] = (f[i][j][k] + t) % mod;
}
}
if(k == c)
{
re = (re + f[i][j][k]) % mod;
}
}
}
printf("%lld\n", re);
return 0;
}
BZOJ 3294: [Cqoi2011]放棋子 计数 + 容斥 + 组合的更多相关文章
- BZOJ 3294: [Cqoi2011]放棋子(计数dp)
传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- bzoj2839: 集合计数 容斥+组合
2839: 集合计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 523 Solved: 287[Submit][Status][Discuss] ...
- BZOJ 3456 NTT图的计数 容斥
思路: RT 懒得写了 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm&g ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- bzoj 2839 集合计数 容斥\广义容斥
LINK:集合计数 容斥简单题 却引出我对广义容斥的深思. 一直以来我都不理解广义容斥是为什么 在什么情况下使用. 给一张图: 这张图想要表达的意思就是这道题目的意思 而求的东西也和题目一致. 特点: ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
随机推荐
- Websocket --(1)简介
最近项目需求提出前台界面实时获取后端数据,也就是数据发生变化后服务端主动通知前端页面,以往都是前端请求服务端.当然了,前人已经为我们想好了解决办法,那就是websocket.至于websocket的介 ...
- 插座-网络问题-ESP8266
//ATK-ESP8266模块测试主函数,检查WIFI模块是否在线 void atk_8266_test(void) { ))//检查WIFI模块是否在线 { atk_8266_quit_trans( ...
- Zookeeper - zookeeper安装与配置
1.什么时Zookeeper ZooKeeper:分布式服务框架 Zookeeper -- 管理分布式环境中的数据. 2.安装 1>官网下载压缩包并解压zookeeper-3.4.14.zip ...
- C语言 --- 函数指针(初级)
1.函数指针:指向函数的指针变量. 函数在内存中也是有地址的,函数名代表函数的内存地址. 例子:函数:int sum(int a,int b); int ...
- python——元组方法及字符串方法
元组方法 Tup.count():计算元组中指定元素出现的次数 Tup.count('c') Tup.index():在元组中从左到右查找指定元素,找到第一个就返回该元素的索引值 Tup.index( ...
- MySql 面试开发技术点汇总
表结构设计 1.为什么一定要设一个主键? 答:因为你不设主键的情况下,innodb也会帮你生成一个隐藏列,作为自增主键.所以啦,反正都要生成一个主键,那你还不如自己指定一个主键,在有些情况下,就能显 ...
- CSP-S全国模拟赛第三场 【nan死了】
mmt 居然第一步膜化乘除 都没看出来,没救了... 大概是贡献前缀和优化的做法 巨兔式讲解:大家都学会了么? 咱发现有大量的 (i/j , i%j ) 同时 对很多 c 产生了贡献,咱可以去优化这一 ...
- form表单添加富文本编辑器
<div class="control-group"> <label class="control-label">内容:</lab ...
- C# 方法,属性,字段
以前是学C++的,初次学微软的C#头都大了.什么字段,常量,属性,方法......微软把别人的东西拿来糅合在C#里,弄成了一个“大杂烩”.其实,说到底,“字段”不就是“变量”吗,所谓的“方法”不就是“ ...
- KNN-机器学习算法
''' Created on Sep 16, 2010 kNN: k Nearest Neighbors Input: inX: vector to compare to existing datas ...