貌似一道经典题

在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样

几堆石子,先手拿若干堆(可以不拿,不能拿光),然后后手一样操作一次,然后是正常的nim

首先无解的情况只有一种,\(k\)为\(0\)的时候(题目里说了,整数\(k\))

考虑后拿的时候,剩下集合的真子集不能有异或和等于自己的,那么干脆直接先手拿到这个状态。

考虑计算能够异或出来的数,可以使用线性基

显然可以证明剩下的堆数不能大于32,对于消元消出的每一个基,求出它最大的可能值,作为剩下的

可以证明这样拿是最优的(我没想过怎么证明)

没开long long爆了几发

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> const int MAXN = 110;
typedef long long LL;
LL nu[MAXN], n, bak, vt[MAXN], va[MAXN];
bool cnt[MAXN]; int main() {
scanf("%lld", &n); if (!n) return puts("-1"), 0;
LL ans = 0;
for (int i = 1; i <= n; ++i) {
scanf("%lld", nu + i);
ans += vt[i] = nu[i];
}
for (int dig = 31; ~dig; --dig) {
int at = 0;
for (int i = 1; i <= n; ++i) {
if (!cnt[i] && nu[i] >> dig & 1) {
if (vt[i] > va[dig]) {
at = i;
va[dig] = vt[i];
}
}
}
if (!at) continue;
cnt[at] = true;
for (int i = 1; i <= n; ++i) if (i != at)
if (nu[i] >> dig & 1)
nu[i] ^= nu[at];
}
for (int i = 0; i <= 31; ++i) ans -= va[i];
printf("%lld\n", ans);
return 0;
}

3105: [cqoi2013]新Nim游戏的更多相关文章

  1. bzoj 3105: [cqoi2013]新Nim游戏 异或高消 && 拟阵

    3105: [cqoi2013]新Nim游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 535  Solved: 317[Submit][Stat ...

  2. 【BZOJ】3105: [cqoi2013]新Nim游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3105 题意:k堆火柴,先手和后手在第一次拿的时候都能拿若干整堆火柴(但不能拿完),之后和nim游戏规 ...

  3. BZOJ 3105 [CQOI2013]新Nim游戏 ——线性基

    [题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即 ...

  4. bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】

    nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...

  5. BZOJ 3105: [cqoi2013]新Nim游戏(线性基)

    解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何 ...

  6. BZOJ 3105: [cqoi2013]新Nim游戏

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3105 题意是要取一些数使得剩余的数xor和的子集不为0 拟阵.求解极大线性无关组.贪心从大到小 ...

  7. BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]

    以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高 ...

  8. BZOJ.3105.[CQOI2013]新Nim游戏(线性基 贪心 博弈论)

    题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为 ...

  9. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

随机推荐

  1. Java设计模式之外观模式和最少知识原则

    外观模式: 外观模式:提供一个统一的接口,来访问子系统中一群功能相关接口(类似一键启动,一键关闭等等) 外观模式定义了一个高层接口,让子系统更容易使用 降低对外接口耦合度 外观模式和命令模式各自侧重点 ...

  2. js中的alert弹出框文字乱码解决方案

    使用如下代码即可: echo '<html>'; echo '<head><meta http-equiv="Content-Type" conten ...

  3. Ubuntu分区挂载

    创建主分区: 25G    主分区    空间起始位置    Ext4日志文件系统    / (ps:安装主要放这了,原因不明) 创建swap分区: 8192MB    逻辑分区        空间起 ...

  4. jq上滑加载更多

    html 结构 <div id="main"> <ul class="order-list" id="list_box"& ...

  5. Linux使用Docker启动Elasticsearch并配合Kibana使用,安装ik分词器

    注意事项 这里我的Linux虚拟机的IP地址是192.168.1.3 Docker运行Elasticsearch容器之后不会立即有反应,要等一会,等待容器内部启动Elasticsearch,才可以访问 ...

  6. Java 从无类型参数Map到有类型参数Map传值的一个问题

    import java.util.HashMap; import java.util.Map; public class MapTest { public static void main(Strin ...

  7. Redis简介,应用场景,优势

    Redis简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久化 ...

  8. 从FBV到CBV一(开始)

    span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; }.CodeMirror ...

  9. 2019-2020-1 20199319《Linux内核原理与分析》第四周作业

    MenuOS的构造 基础知识 1.操作系统的两把宝剑:①中断上下文的切换:保存现场和恢复现场:②进程上下文的切换. 2.Linux内核以A.B.C.D方式命名:A和B变得无关紧要,C是内核的真实版本, ...

  10. 文件I/O简述

    什么是I/O 宏观上讲,I/O是信息处理系统(例如计算机)与外部世界(可能是人或其他信息处理系统)之间的通信.输入(Input)是系统接收的信号或数据,输出(Output)是从其发送的信号或数据.另一 ...