原文地址Count Bayesie
这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释得非常清晰易懂,建议阅读

相对熵,又称KL散度( Kullback–Leibler divergence),是描述两个概率分布P和Q差异的一种方法。它是非对称的,这意味着D(P||Q) ≠ D(Q||P)。

KL散度的计算

衡量近似分布带来的信息损失。 
KL散度的计算公式其实是熵计算公式的简单变形,在原有概率分布 p上,加入我们的近似概率分布 q,计算他们的每个取值对应对数的差:

换句话说,KL散度计算的就是数据的原分布与近似分布的概率的对数差的期望值。 
在对数以2为底时,log⁡2 ,可以理解为“我们损失了多少位的信息” 
写成期望形式 :

The more common way to see KL divergence written is as follows:

With KL divergence we can calculate exactly how much information is lost when we approximate one distribution with another.

散度不是距离

因为KL散度不具有交换性,所以不能理解为“距离”的概念,衡量的并不是两个分布在空间中的远近,更准确的理解还是衡量一个分布相比另一个分布的信息损失(infomation lost)

使用KL散度进行优化

通过不断改变预估分布的参数,我们可以得到不同的KL散度的值。 
在某个变化范围内,KL散度取到最小值的时候,对应的参数是我们想要的最优参数。 
这就是使用KL散度优化的过程。

参考CodenameNC的博客

GAN网络使用KL散度

KL散度的理解(GAN网络的优化)的更多相关文章

  1. 『TensorFlow』通过代码理解gan网络_中

    『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使 ...

  2. (转)KL散度的理解

    KL散度(KL divergence) 全称:Kullback-Leibler Divergence. 用途:比较两个概率分布的接近程度.在统计应用中,我们经常需要用一个简单的,近似的概率分布 f * ...

  3. 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上

    GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...

  4. KL散度相关理解以及视频推荐

    以下内容基于对[中字]信息熵,交叉熵,KL散度介绍||机器学习的信息论基础这个视频的理解,请务必先看几遍这个视频. 假设一个事件可能有多种结果,每一种结果都有其发生的概率,概率总和为1,也即一个数据分 ...

  5. GAN网络从入门教程(二)之GAN原理

    在一篇博客GAN网络从入门教程(一)之GAN网络介绍中,简单的对GAN网络进行了一些介绍,介绍了其是什么,然后大概的流程是什么. 在这篇博客中,主要是介绍其数学公式,以及其算法流程.当然数学公式只是简 ...

  6. 从香农熵到手推KL散度

    信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...

  7. Kullback-Leibler(KL)散度介绍

    在这篇文章中,我们将探讨一种比较两个概率分布的方法,称为Kullback-Leibler散度(通常简称为KL散度).通常在概率和统计中,我们会用更简单的近似分布来代替观察到的数据或复杂的分布.KL散度 ...

  8. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  9. 非负矩阵分解(1):准则函数及KL散度

    作者:桂. 时间:2017-04-06  12:29:26 链接:http://www.cnblogs.com/xingshansi/p/6672908.html 声明:欢迎被转载,不过记得注明出处哦 ...

随机推荐

  1. Oracle11g RAC+DG搭建

    项目环境准备 3.1虚拟机配置 版本选择 注意Linux操作系统.此次项目我选择的版本是Oracle Enterprise Linux 5.4 内存的设置 本人电脑物理内存8G,由于此次实验要开三台虚 ...

  2. 对象转JSON字符串与json字符串转对象方法

    JSON.stringify()[从一个对象中解析出字符串] JSON.parse()[从一个json字符串中解析出对象] var data = {"nums": 1, " ...

  3. Apicloud_(项目)网上书城03_拓展模块实现

    Apicloud_(项目)网上书城01_前端页面开发 传送门 Apicloud_(项目)网上书城02_后端数据获取 传送门 Apicloud_(项目)网上书城03_拓展模块实现 传送门 实现商品详情页 ...

  4. Spring data redis-StringRedisTemplate 用法

    Spring-data-redis为spring-data模块中对redis的支持部分,简称为“SDR”,提供了基于jedis客户端API的高度封装以及与spring容器的整合,事实上jedis客户端 ...

  5. C++入门经典-例5.3例5.4-输出int指针运算后的地址值

    1:代码如下: // 5.3.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  6. docker —宝塔面板

    下载个单独的系统镜像 [root@git opt]# docker images REPOSITORY TAG IMAGE ID CREATED SIZE docker.io/nginx-tomcat ...

  7. 怎样用 Bash 编程:逻辑操作符和 shell 扩展

    学习逻辑操作符和 shell 扩展,本文是三篇 Bash 编程系列的第二篇. Bash 是一种强大的编程语言,完美契合命令行和 shell 脚本.本系列(三篇文章,基于我的 三集 Linux 自学课程 ...

  8. Uep查询语句总结

    今天没事干总结一下uep查询语句: 第一种方法: 注意在实体写上对应的构造方法 package com.haiyisoft.entity.wz; import java.math.BigDecimal ...

  9. [Java]算术表达式求值之一(中序表达式转后序表达式方案)

    第二版请见:https://www.cnblogs.com/xiandedanteng/p/11451359.html 入口类,这个类的主要用途是粗筛用户输入的算术表达式: package com.h ...

  10. android studio中方法和类被调用多次,但是AS显示灰色,解决办法

    Android Studio里面的一些类及方法,明明有被其他的类或者方法调用,但是去看的时候显示灰色,鼠标放上面的时候显示:Class ‘XXX’ is never used或者Method ‘XXX ...