题面

大家都是两遍SPFA吗?我这里就一遍dp啊;

首先判断对于一个点u,是否可以从一号点走到这里,并且可以从u走到n号点; 对于这样的点我们打上标记;

那么抛出水晶球的点一定是从打上标记的点中选出一个;(自己可以理解一下)

然后跑一遍dp,dp[i]表示从点1到点i的若干条路径中,所经过的点的权值最小的值;

比较明显的发现dp[v]可以从dp[u]继承过来(v是u的儿子),所以具有优美的DP性质;

最后ans=max(w[i]-dp[i]);

#include <bits/stdc++.h>
#define cin std::ios::sync_with_stdio(false); cin
#define cout std::ios::sync_with_stdio(false); cout
using namespace std;
int n,m;
struct littlestar{
int to;
int nxt;
}star[],star2[];
int head[],cnt,head2[],cnt2;
inline void add(int u,int v)
{
star[++cnt].to=v;
star[cnt].nxt=head[u];
head[u]=cnt;
}
inline void add2(int u,int v)
{
star2[++cnt].to=v;
star2[cnt].nxt=head2[u];
head2[u]=cnt;
}
int w[];
queue<int> q;
int bo1[],bo2[];
void bfs1(int s)
{
while(q.size()) q.pop();
q.push(s);
bo1[s]=;
while(q.size()){
int u=q.front();
q.pop();
for(register int i=head[u];i;i=star[i].nxt){
int v=star[i].to;
if(!bo1[v]){
bo1[v]=;
q.push(v);
}
}
}
}
void bfs2(int s)
{
while(q.size()) q.pop();
q.push(s);
bo2[s]=;
while(q.size()){
int u=q.front();
q.pop();
for(register int i=head2[u];i;i=star2[i].nxt){
int v=star2[i].to;
if(!bo2[v]){
bo2[v]=;
q.push(v);
}
}
}
}
int f[];
int vis[];
void SPFA()
{
while(q.size()) q.pop();
for(register int i=;i<=n;i++) f[i]=;
q.push();
f[]=w[];
vis[]=;
while(q.size()){
int u=q.front();
q.pop();
vis[u]=;
for(register int i=head[u];i;i=star[i].nxt){
int v=star[i].to;
if(!vis[v]){
vis[v]=;
if(f[v]==){
f[v]=min(f[u],w[v]);
q.push(v);
}
else{
if(f[u]<f[v]){
f[v]=f[u];
q.push(v);
}
}
}
}
}
}
int main()
{
cin>>n>>m;
for(register int i=;i<=n;i++){
cin>>w[i];
}
for(register int i=;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
if(w==){
add(u,v);
add2(v,u);
}
else{
add(u,v);
add2(v,u);
add(v,u);
add2(u,v);
}
}
bfs1();
bfs2(n);
SPFA();
int ans=;
for(register int i=;i<=n;i++){
if(bo1[i]&&bo2[i]){
ans=max(w[i]-f[i],ans);
}
}
cout<<ans<<endl;
}

洛谷 P1073 最优贸易 题解的更多相关文章

  1. 洛谷 P1073 最优贸易 解题报告

    P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...

  2. 洛谷P1073 最优贸易==codevs1173 最优贸易

    P1073 最优贸易 题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一 ...

  3. 洛谷——P1073 最优贸易

    P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...

  4. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  5. 洛谷P1073 最优贸易 [图论,DP]

    题目传送门 最优贸易 题目描述 C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分为双向 ...

  6. 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)

    传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...

  7. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  8. 洛谷 P1073 最优贸易

    题目描述 CC C 国有 n n n 个大城市和 m mm 条道路,每条道路连接这 nnn 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 mmm 条道路中有一部分为单向通行的道路 ...

  9. NOIP2009 codevs1173 洛谷P1073 最优贸易

    Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...

随机推荐

  1. 多态:JVM是如何进行方法调用的

    在我们平时的工作学习中写java代码时,如果我们在同一个类中定义了两个方法名和参数类型都相同的方法时,编译器会直接报错给我们.还有在代码运行的时候,如果子类定义了一个与父类完全相同的方法的时候,父类的 ...

  2. Compress Words

    E. Compress Words 直接套 KMP 即可(那为什么打 cf 的时候没有想到...),求出后一个单词(word)的前缀数组,然后从前面已得的字符串的末尾 - word. length ( ...

  3. Unity3D_(游戏)卡牌03_选关界面

      启动屏界面.主菜单界面.选关界面.游戏界面 卡牌01_启动屏界面 传送门 卡牌02_主菜单界面 传送门 卡牌03_选关界面 传送门 卡牌04_游戏界面    传送门 选关界面效果 (鼠标放在不同关 ...

  4. [CSP-S模拟测试]:最小值(DP+乱搞)

    题目背景 $Maxtir$更喜欢序列的最小值. 题目传送门(内部题128) 输入格式 第一行输入一个正整数$n$和四个整数$A,B,C,D$. 第二行输入$n$个整数,第$i$个数表示$a_i$. 输 ...

  5. 关于Jdk7与Jdk8对Collections进行分组的区别

    先准备一点数据: public class User {    private Integer id;    private String type;    private String name;  ...

  6. MyBaits理解?

    (1)MyBaits是一个基于Java的持久层框架,支持普通或定制化SQL查询.存储过程以及高级映射,使用XML或注解来配置和映射信息. (2)应用程序使用SQLSessionFactory实例,一个 ...

  7. Mimikatz 攻防杂谈

    前几天看到了老外一篇讲 mimikatz 防御的文章,感觉行文思路还不错,但是内容稍有不足,国内也有一篇翻译,但是只是照着错误翻译的,所以就萌生了把那篇优秀文章,翻译复现,并加入其它一些内容,本文只是 ...

  8. Android 中布局的优化措施都有哪些?

    1.尽可能减少布局的嵌套层级可以使用 sdk 提供的 hierarchyviewer 工具分析视图树,帮助我们发现没有用到的布局.2.不用设置不必要的背景,避免过度绘制比如父控件设置了背景色,子控件完 ...

  9. 阶段3 2.Spring_07.银行转账案例_3 分析事务的问题并编写ConnectionUtils

    不是没有事务造成的 这样相当于有四个connection 每一个都有自己独立的事物 每一个自己成功就提交事务. 已经提交的就执行结束.没有提交的就报异常 让这些操作使用同一个connection 事物 ...

  10. Group By查询

    1.概述 “Group By”从字面意义上理解就是根据“By”指定的规则对数据进行分组,所谓的分组就是将一个“数据集”划分成若干个“小区域”,然后针对若干个“小区域”进行数据处理. 2.原始表 3.简 ...