深度优先搜索(DFS)

【算法入门】

1.前言
深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法。它的思想是从一个顶点V0开始,沿着一条路一直走到底,如果发现不能到达目标解,那就返回到上一个节点,然后从另一条路开始走到底,这种尽量往深处走的概念即是深度优先的概念。

你可以跳过第二节先看第三节,:)

2.深度优先搜索VS广度优先搜索

2.1演示深度优先搜索的过程
还是引用上篇文章的样例图,起点仍然是V0,我们修改一下题目意思,只需要让你找出一条V0到V6的道路,而无需最短路。

图2-1 寻找V0到V6的一条路(无需最短路径)

假设按照以下的顺序来搜索:

1.V0->V1->V4,此时到底尽头,仍然到不了V6,于是原路返回到V1去搜索其他路径;

2.返回到V1后既搜索V2,于是搜索路径是V0->V1->V2->V6,,找到目标节点,返回有解。

这样搜索只是2步就到达了,但是如果用BFS的话就需要多几步。

2.2深度与广度的比较
(你可以跳过这一节先看第三节,重点在第三节)

从上一篇《【算法入门】广度/宽度优先搜索(BFS) 》中知道,我们搜索一个图是按照树的层次来搜索的。

我们假设一个节点衍生出来的相邻节点平均的个数是N个,那么当起点开始搜索的时候,队列有一个节点,当起点拿出来后,把它相邻的节点放进去,那么队列就有N个节点,当下一层的搜索中再加入元素到队列的时候,节点数达到了N2,你可以想想,一旦N是一个比较大的数的时候,这个树的层次又比较深,那这个队列就得需要很大的内存空间了。

于是广度优先搜索的缺点出来了:在树的层次较深&子节点数较多的情况下,消耗内存十分严重。广度优先搜索适用于节点的子节点数量不多,并且树的层次不会太深的情况。

那么深度优先就可以克服这个缺点,因为每次搜的过程,每一层只需维护一个节点。但回过头想想,广度优先能够找到最短路径,那深度优先能否找到呢?深度优先的方法是一条路走到黑,那显然无法知道这条路是不是最短的,所以你还得继续走别的路去判断是否是最短路?

于是深度优先搜索的缺点也出来了:难以寻找最优解,仅仅只能寻找有解。其优点就是内存消耗小,克服了刚刚说的广度优先搜索的缺点。

3.深度优先搜索

3.1.举例

给出如图3-1所示的图,求图中的V0出发,是否存在一条路径长度为4的搜索路径。

图3-1

显然,我们知道是有这样一个解的:V0->V3->V5->V6。

3.2.处理过程

3.3.对应例子的伪代码

这里先给出上边处理过程的对应伪代码。

/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度,也即是路径长度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (d == ){//路径长度为返回true,表示此次搜索有解
return true;
} for (Node nextNode in n){//遍历跟节点n相邻的节点nextNode,
if (!visit[nextNode]){//未访问过的节点才能继续搜索 //例如搜索到V1了,那么V1要设置成已访问
visit[nextNode] = true; //接下来要从V1开始继续访问了,路径长度当然要加 if (DFS(nextNode, d+)){//如果搜索出有解
//例如到了V6,找到解了,你必须一层一层递归的告诉上层已经找到解
return true;
} //重新设置成未访问,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false; }
//到这里,发现本次搜索还没找到解,那就要从当前节点的下一个节点开始搜索。
}
return false;//本次搜索无解
}

3.4.DFS函数的调用堆栈

此后堆栈调用返回到V0那一层,因为V1那一层也找不到跟V1的相邻未访问节点

此后堆栈调用返回到V3那一层

此后堆栈调用返回到主函数调用DFS(V0,0)的地方,因为已经找到解,无需再从别的节点去搜别的路径了。

4.核心代码

这里先给出DFS的核心代码。

/**
* DFS核心伪代码
* 前置条件是visit数组全部设置成false
* @param n 当前开始搜索的节点
* @param d 当前到达的深度
* @return 是否有解
*/
bool DFS(Node n, int d){
if (isEnd(n, d)){//一旦搜索深度到达一个结束状态,就返回true
return true;
} for (Node nextNode in n){//遍历n相邻的节点nextNode
if (!visit[nextNode]){//
visit[nextNode] = true;//在下一步搜索中,nextNode不能再次出现
if (DFS(nextNode, d+)){//如果搜索出有解
//做些其他事情,例如记录结果深度等
return true;
} //重新设置成false,因为它有可能出现在下一次搜索的别的路径中
visit[nextNode] = false;
}
}
return false;//本次搜索无解
}

当然了,这里的visit数组不一定是必须的,在一会我给出的24点例子中,我们可以看到这点,这里visit的存在只是为了保证记录节点不被重新访问,也可以有其他方式来表达的,这里只给出核心思想。

深度优先搜索的算法需要你对递归有一定的认识,重要的思想就是:抽象!

可以从DFS函数里边看到,DFS里边永远只处理当前状态节点n,而不去关注它的下一个状态。

它通过把DFS方法抽象,整个逻辑就变得十分的清晰,这就是递归之美。

5.另一个例子:24点

5.1.题目描述
想必大家都玩过一个游戏,叫做“24点”:给出4个整数,要求用加减乘除4个运算使其运算结果变成24,4个数字要不重复的用到计算中。

例如给出4个数:1、2、3、4。我可以用以下运算得到结果24:

1*2*3*4 = 24;2*3*4/1 = 24;(1+2+3)*4=24;……

如上,是有很多种组合方式使得他们变成24的,当然也有无法得到结果的4个数,例如:1、1、1、1。

现在我给你这样4个数,你能告诉我它们能够通过一定的运算组合之后变成24吗?这里我给出约束:数字之间的除法中不得出现小数,例如原本我们可以1/4=0.25,但是这里的约束指定了这样操作是不合法的。

5.2.解法:搜索树
这里为了方便叙述,我假设现在只有3个数,只允许加法减法运算。我绘制了如图5-1的搜索树。

图5-1

此处只有3个数并且只有加减法,所以第二层的节点最多就6个,如果是给你4个数并且有加减乘除,那么第二层的节点就会比较多了,当延伸到第三层的时候节点数就比较多了,使用BFS的缺点就暴露了,需要很大的空间去维护那个队列。而你看这个搜索树,其实第一层是3个数,到了第二层就变成2个数了,也就是递归深度其实不会超过3层,所以采用DFS来做会更合理,平均效率要比BFS快(我没写代码验证过,读者自行验证)。

6.OJ题目
题目分类来自网络:

sicily:1019 1024 1034 1050 1052 1153 1171 1187

pku:1088 1176 1321 1416 1564 1753 2492 3083 3411

7.总结

DFS适合此类题目:给定初始状态跟目标状态,要求判断从初始状态到目标状态是否有解。

8.扩展
不知道你注意到没,在深度/广度搜索的过程中,其实相邻节点的加入如果是有一定策略的话,对算法的效率是有很大影响的,你可以做一下简单马周游跟马周游这两个题,你就有所体会,你会发现你在搜索的过程中,用一定策略去访问相邻节点会提升很大的效率。

这些运用到的贪心的思想,你可以再看看启发式搜索的算法,例如A*算法等。

=========================================================

出处:raphealguo@CSDN

【算法入门】深度优先搜索(DFS)的更多相关文章

  1. [算法入门]——深度优先搜索(DFS)

    深度优先搜索(DFS) 深度优先搜索叫DFS(Depth First Search).OK,那么什么是深度优先搜索呢?_? 样例: 举个例子,你在一个方格网络中,可以简单理解为我们的地图,要从A点到B ...

  2. 算法总结—深度优先搜索DFS

    深度优先搜索(DFS) 往往利用递归函数实现(隐式地使用栈). 深度优先从最开始的状态出发,遍历所有可以到达的状态.由此可以对所有的状态进行操作,或列举出所有的状态. 1.poj2386 Lake C ...

  3. [算法&数据结构]深度优先搜索(Depth First Search)

    深度优先 搜索(DFS, Depth First Search) 从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止.如果u存在,那么从u ...

  4. 深度优先搜索 DFS 学习笔记

    深度优先搜索 学习笔记 引入 深度优先搜索 DFS 是图论中最基础,最重要的算法之一.DFS 是一种盲目搜寻法,也就是在每个点 \(u\) 上,任选一条边 DFS,直到回溯到 \(u\) 时才选择别的 ...

  5. 深度优先搜索DFS和广度优先搜索BFS简单解析(新手向)

    深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每个点仅被访问一次,这个过程就是图的遍历.图的遍历常用的有深度优先搜索和广度优先搜索,这两者对于有向图和无向图 ...

  6. 利用广度优先搜索(BFS)与深度优先搜索(DFS)实现岛屿个数的问题(java)

    需要说明一点,要成功运行本贴代码,需要重新复制我第一篇随笔<简单的循环队列>代码(版本有更新). 进入今天的主题. 今天这篇文章主要探讨广度优先搜索(BFS)结合队列和深度优先搜索(DFS ...

  7. 深度优先搜索DFS和广度优先搜索BFS简单解析

    转自:https://www.cnblogs.com/FZfangzheng/p/8529132.html 深度优先搜索DFS和广度优先搜索BFS简单解析 与树的遍历类似,图的遍历要求从某一点出发,每 ...

  8. 算法与数据结构基础 - 深度优先搜索(DFS)

    DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...

  9. 图的深度优先搜索(DFS)和广度优先搜索(BFS)算法

    深度优先(DFS) 深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接 ...

随机推荐

  1. SQL高级教程-TOP 子句

    TOP 子句 TOP 子句用于规定要返回的记录的数目. 对于拥有数千条记录的大型表来说,TOP 子句是非常有用的. 注释:并非所有的数据库系统都支持 TOP 子句. SQL Server 的语法: S ...

  2. consul windows下搭建

    起源 由于项目在linux部署,但是开发和测试是在windows下的,所以,暂时接触到consul,暂时也不会远程连接,只好在windows下安装consul 过程 去官网下载:https://www ...

  3. 2-sat问题简记

    关于2-sat问题,这里笔者主要是做一些简记,如要详细了解,可以读一读此dalao的文章:https://blog.csdn.net/jarjingx/article/details/8521690 ...

  4. JSP 不能解析EL表达式的解决办法

    原文地址:http://www.jb51.net/article/30791.htm 原因是:在默认情况下,Servlet 2.4 / JSP 2.0支持 EL 表达式. 解决的办法有两种: 1.修改 ...

  5. Python基础面试题库

    Python基础面试题库   Python是一门学习曲线较为容易的编程语言,随着人工智能时代的到来,Python迎来了新一轮的高潮.目前,国内知乎.网易(游戏).腾讯(某些网站).搜狐(邮箱).金山. ...

  6. 面试题:String类通用构造,拷贝构造,析构,赋值函数实现

    已知 String 类定义如下: class String { public: //通用构造函数 String(const char* str = NULL); //拷贝构造函数 String(con ...

  7. 构造Map并对其排序

    #构造Map并对其排序 attr_tul = ['a','b','c','d','e','f'] one_tul = [,,,,,] one_dic = {} for i in range(len(a ...

  8. CSS-W3School:CSS table-layout 属性

    ylbtech-CSS-W3School:CSS table-layout 属性 1.返回顶部 1. CSS table-layout 属性 CSS 参考手册 实例 设置表格布局算法: table { ...

  9. 2018 icpc 青岛

    https://zoj.pintia.cn/contests/91827364639/problems C 要把这两个二进制串变为相同,需要先看哪些位置不同,设为数组c,某位为1则两位不同. 分1形成 ...

  10. 把自己活成AI

    干啥都失败,所以从0重新开始. 把自己活成AI 准则1:一件事的对错,只代表这件事本身.多一点的解释都是错误. 准则2:大多数人默认遵守的就是规则和法律.大多数人默认承认的就是道德. 然后取其和法律的 ...