图由边的集合及顶点的集合组成。边是有方向的是有序图(有向图),否则就是无序图(无向图)。图中的一系列顶点构成路径,路径中所有的顶点都由边连接。路径的长度用路径中第一个顶点到最后一个顶点之间边的数量表示。

邻接表来表示边,即将与某一顶点的相邻的边表示为由该顶点的相邻顶点列表构成的数组,并以该顶点作为索引。比如,如果顶点 2 与顶点 0、 1、3、4 相连,那么就将0、1、3、4存储在数组中索引为 2 的位置。

Graph 类定义图

function Graph(v) {
this.vertices = v; //顶点的数量
this.edges = 0;
this.adj = [];
for (var i = 0; i < this.vertices; ++i) {
this.adj[i] = []; //保存与顶点 i 相邻的顶点列表
}
this.addEdge = addEdge;
this.showGraph = showGraph;
this.dfs = dfs;
this.bfs = bfs;
this.marked = []; //保存未访问过的顶点
for (var i = 0; i < this.vertices; ++i) {
this.marked[i] = false;
}
this.pathTo = pathTo;
this.hasPathTo = hashPathTo;
this.edgeTo = [];
}

addEdge(A,B) 添加边,先查找顶点 A 的邻接表,将顶点 B 添加到列表中,然后再查找顶点 B 的邻接表,将顶点 A 加入列表。最后,将边数加 1。

function addEdge(v, w) {
  this.ajd[v].push(w);
  this.adj[w].push(v);
  this.edges++;
}

showGraph() 方法显示所有顶点及其相邻顶点列表

function showGraph() {
for (var i = 0; i < this.vertices; ++i) {
var str = '';
str += i + " -> ";
for (var j = 0; j < this.vertices; ++j) {
if (this.adj[i][j] != undefined) {
str += this.adj[i][j] + ' ';
}
}
console.log(str);
}
}

搜索图

确定从一个指定的顶点可以到达其他哪些顶点,有两种搜索方法:深度优先搜索和广度优先搜索。

深度优先搜索从起始顶点开始追溯,直到到达最后一个顶点,然后回溯, 继续追溯下一条路径,直到到达最后的顶点,如此往复,直到没有路径为止。当访问一个没有访问过的顶点时,将它标记为已访问,再递归地去访问在初始顶点的邻接表中其他没有访问过的顶点。

function dfs(v) {
this.marked[v] = true;
if (this.adj[v] != undefined) {
console.log("Visited vertex: " + v);
}
for(var w of this.adj[v]) {
if (!this.marked[w]) {
this.dfs(w);
}
}
} //调用
g = new Graph(5);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 3);
g.addEdge(2, 4);
g.showGraph();
g.dfs(0);

广度优先搜索从第一个顶点开始,尝试访问尽可能靠近它的顶点。本质上,这种搜索是逐层移动的,首先检查最靠近第一个顶点的层,再逐渐向下移动到离起始顶点最远的层。

function bfs(s) {
var queue = [];
this.marked[s] = true;
queue.push(s); // 添加到队尾
while (queue.length > 0) {
var v = queue.shift(); // 从队首移除
if (v != undefined) {
console.log("Visisted vertex: " + v);
}
for(var w of this.adj[v]) {
if (!this.marked[w]) {this.marked[w] = true;
queue.push(w);
}
}
}
}

JS中数据结构之图的更多相关文章

  1. JS中数据结构之二叉查找树

    树是一种非线性的数据结构,以分层的方式存储数据.在二叉树上进行查找非常快,为二叉树添加或删除元素也非常快. 一棵树最上面的节点称为根节点,如果一个节点下面连接多个节点,那么该节点称为父节点,它下面的节 ...

  2. JS中数据结构之集合

    集合(set)是一种包含不同元素的数据结构.集合中的元素称为成员.集合的两个最重要特性是:首先,集合中的成员是无序的:其次,集合中不允许相同成员存在.当你想要创建一个数据结构用来保存一些独一无二的元素 ...

  3. JS中数据结构之散列表

    散列是一种常用的数据存储技术,散列后的数据可以快速地插入或取用.散列使用的数据 结构叫做散列表.在散列表上插入.删除和取用数据都非常快. 下面的散列表是基于数组进行设计的,数组的长度是预先设定的,如有 ...

  4. JS中数据结构之字典

    字典是一种以键 - 值对形式存储数据的数据结构 通过数组实现字典 function Dictionary() { this.add = add; this.datastore = new Array( ...

  5. JS中数据结构之链表

    1.链表的基本介绍 数组不总是组织数据的最佳数据结构,在很多编程语言中,数组的长度是固定的,所以当数组已被数据填满时,再要加入新的元素就会非常困难.在数组中,添加和删除元素也很麻烦,因为需要将数组中的 ...

  6. JS中数据结构之栈

    1.栈的基本介绍 栈是一种高效的数据结构,因为数据只能在栈顶添加或删除,所以这样的操作很快,而且容易实现. 栈是一种特殊的列表,栈内的元素只能通过列表的一端访问,这一端称为栈顶.栈被称为一种后入先出( ...

  7. JS中数据结构之列表

    列表是一组有序的数据.每个列表中的数据项称为元素.在 JavaScript 中,列表中的元素可以是任意数据类型.列表中可以保存多少元素并没有事先限定并可以不断壮大,实际使用时元素的数量受到程序内存的限 ...

  8. JS中数据结构之队列

    队列是一种列表,不同的是队列只能在队尾插入元素,在队首删除元素.队列用于存储按 顺序排列的数据,先进先出. 队列的两种主要操作是:向队列中插入新元素和删除队列中的元素.插入操作也叫做入 队,删除操作也 ...

  9. Chart.js中文文档-雷达图

    雷达图或蛛网图(Radar chart) 简介 A radar chart is a way of showing multiple data points and the variation bet ...

随机推荐

  1. JDBC链接Mysql失败

    错误信息:Error querying database.  Cause: com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionExc ...

  2. Centos7配置定时重启服务器

    Crontab是一个很方便的在unix/linux系统上定时(循环)执行某个任务的程序. 用 service crond status 查看 crond服务状态,如果没有启动则 systemctl s ...

  3. (appium+python)UI自动化_07_app UI自动化实例【叮咚搜索加车为例】

    前言 初学UI自动化的小伙伴,在配置好appium+python自动化环境后,往往不知道如何下手实现自动化.小编在初期学习的时候也有这种疑惑,在此以叮咚买菜app-搜索加车为实例,展示下appium是 ...

  4. hihocoder 1015 : KMP算法(kmp)

    传送门 Description 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一只河蟹,于是河蟹就向小H ...

  5. vue里面如何让v-for循环出来的列表里面的列表click事件只对当前列表有效

    <li @click="show"> <span>1</span> </li> <li @click="show&q ...

  6. tensorflow 之Dataset数据集之批量数据

    ###生成批次数据 import tensorflow as tf '''reapt()生成重复数据集 batch()将数据集按批次组合''' file_name = ['img1','img2',' ...

  7. GitBook "How to be a programmer"

    网址:https://www.gitbook.com/book/braydie/how-to-be-a-programmer/ 最近看了这本 GitBook,主要讲程序员应该掌握的技能和注意的问题,分 ...

  8. memset 初始化数组 & 实现原理

    初始化数组可不必使用n重for循环. 原理 memset具有初始化数组的功能,能够初始化数组中的每一个值. 它是将数组中的每一个数的二进制的每一个字节初始化的. 比如初始化int类型的a数组:mems ...

  9. [暑假集训Day1T2]北极通讯网络

    这题主要考察对“卫星电话”的理解,k个卫星电话相当于可以让k个联通块保持联通,因此我们只需要让原图连成k个联通块,然后给每个联通块的任意一个节点发一部卫星电话即可.因此我们需要连n-k条边,特别地,当 ...

  10. LCT题单(自己的做题情况反馈)(转自Flash)

    LCT题单(自己的做题情况反馈)(转自Flash) 随时进Flash Hu的LCT看一发 也可以看一下我自己的风格的板子 开始 维护链信息(LCT上的平衡树操作) [X] 洛谷P3690 [模板]Li ...