1103 Integer Factorization (30)
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger than { b1,b2,⋯,bK } if there exists 1≤L≤K such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include<bits/stdc++.h>
using namespace std; const int maxn=; int factor[maxn]; int n,k,p; vector<int> ans,temp; int cnt=; bool flag=false; int maxSum = -; void init(){
int i=,temp=;
while(temp<=n){
factor[i]=(int)pow(i*1.0,p);
temp=factor[i];
cnt=i;
i++;
}
} void DFS(int index,int nowk,int sumW,int sumC){
if(nowk>k||sumC>n)
return; if(nowk==k&&sumC==n){ flag=true; if(sumW>maxSum){
maxSum=sumW;
ans=temp;
}
} if(index->=){
temp.push_back(index);
DFS(index,nowk+,sumW+index,sumC+factor[index]);
temp.pop_back();
DFS(index-,nowk,sumW,sumC); } } int main(){ ios::sync_with_stdio(false);
cin.tie(); cin>>n>>k>>p; init(); DFS(cnt,,,); if(!flag){
cout<<"Impossible\n";
return ;
} cout<<n<<" ="; for(int i=;i<ans.size();i++){
if(i>)
cout<<" +"; cout<<" "<<ans[i]<<"^"<<p;
} cout<<endl; return ; }
1103 Integer Factorization (30)的更多相关文章
- 1103. Integer Factorization (30)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...
- 1103 Integer Factorization (30)(30 分)
The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...
- 【PAT甲级】1103 Integer Factorization (30 分)
题意: 输入三个正整数N,K,P(N<=400,K<=N,2<=P<=7),降序输出由K个正整数的P次方和为N的等式,否则输出"Impossible". / ...
- PAT (Advanced Level) 1103. Integer Factorization (30)
暴力搜索. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...
- PAT甲题题解-1103. Integer Factorization (30)-(dfs)
该题还不错~. 题意:给定N.K.P,使得可以分解成N = n1^P + … nk^P的形式,如果可以,输出sum(ni)最大的划分,如果sum一样,输出序列较大的那个.否则输出Impossible. ...
- PAT甲级——1103 Integer Factorization (DFS)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720 1103 Integer Factorizatio ...
- PAT 1103 Integer Factorization[难]
1103 Integer Factorization(30 分) The K−P factorization of a positive integer N is to write N as the ...
- PAT甲级1103. Integer Factorization
PAT甲级1103. Integer Factorization 题意: 正整数N的K-P分解是将N写入K个正整数的P次幂的和.你应该写一个程序来找到任何正整数N,K和P的N的K-P分解. 输入规格: ...
- 【PAT】1103 Integer Factorization(30 分)
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...
随机推荐
- (55)C# windows 消息
窗体捕获消息 namespace WindowsFormsApp1 { public partial class Form1 : Form { public Form1() { InitializeC ...
- PHP-文件和目录操作
目录操作 创建目录:mkdir(目录地址, 权限, 是否递归创建 = false); 删除目录:rmdir(目录地址);(仅仅可以删除空目录,不支持递归删除) 移动(改名):rename(旧地址, 新 ...
- 用php写爬虫去爬数据
参考文档1 参考文档2 这里是我自己写的一个小需求 <?php /** 采集http://www.959.cn/school,即时更新的最新的文章内容:每分钟采集一次.采集结束后实时入库并展示. ...
- Polysh实现多服务器批量执行shell
安装 wget wget http://guichaz.free.fr/polysh/files/polysh-0.4.tar.gz tar -zxvf polysh-0.4.tar.gz cd po ...
- VMware新建虚拟机之后的初始化工作
一.开启网络功能(后面的ifcfg-ens33自身系统不同) vi /etc/sysconfig/network-scripts/ifcfg-ens33 ONBOOT=yes systemctl re ...
- 更换nginx默认端口以及配置文件位置
前言 近段时间在准备毕业设计的前期准备,基本确定了前后端分离的架构,于是就需要用到了nginx. 在之前nginx是放在docker上,所以没有端口更改跟配置文件配置的烦恼.但是现在是直接放在服务器上 ...
- css中的居中问题
前两天写了一篇关于display:table的用法,里面涉及到居中的问题,这两天愈发觉得css中的居中是一个值得关注的问题,现总结如下. 一.垂直居中 (1)inline或者inline-*元素 1. ...
- Python之循环遍历
range() 快输生成序列 利用 items()提取字典元素 在Python里,for循环后面是可以接一个else 的,在for循环正常结束时候,else 语句会被执行(while循环也是一样哦), ...
- easyui grid单元格类型
在实际应用中可能会碰到不同的需求,比如会根据每行不同的参数或属性设置来设置同列不同的editor类型,这时原有的例子就显的有点太过简单,不能实现我们的需求,现在应用我在项目中的操作为例,显示下实现同列 ...
- ZOJ-3662 Math Magic 背包DP
这题不错,可惜我还是太弱了,没想到qwq. 看了网上大佬题解之后写的,对比了一下代码,好像我写的还是挺简洁的(逃,只是吞行比较多). 因为直接用lcm的值做下标会超时,所以我们观察发现可以组成lcm为 ...