UOJ 275. 【清华集训2016】组合数问题

组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数。举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式:

\[C_n^m=\frac{n!}{m!(n-m)!}
\]

其中 \(n!=1×2×⋯×n\)。(额外的,当 n=0n=0 时, n!=1n!=1)

小葱想知道如果给定$ n,m$ 和 \(k\),对于所有的 \(0≤i≤n,0≤j≤\min\{i,m\}\)有多少对 \((i,j)\) 满足 \(C_i^j\)是 \(k\) 的倍数。

答案对 \(10^9+7\) 取模。

输入格式

第一行有两个整数 \(t,k\)其中 \(t\) 代表该测试点总共有多少组测试数据。

接下来 \(t\) 行每行两个整数 \(n,m\)。

输出格式

\(t\) 行,每行一个整数代表所有的 \(0\leq i\leq n,0\leq j\leq \min \left \{ i, m \right \}\) 中有多少对$ (i,j)\(满足\)C_i^j$是 \(k\) 的倍数。

限制与约定

对于\(100\%\) 的测试点, \(1\leq n,m\leq 10^{18},1 \leq t,k\leq 100\),且 \(k\) 是一个质数。

\(\\\)

首先考虑使用卢卡斯定理:

\[\text{Lucas}(n,m)\bmod k=\text{Lucas}(\frac{n}{k},\frac{m}{k})\cdot\binom{n\%k}{m\%k}\bmod k
\]

迭代过程中只要有一位上的\(\binom{n\%k}{m\%k}=0\)那么最后的组合数就是\(k\)的倍数。当\(n<k,m<k\)时,只有\(n<m\)的情况下:\(\binom{n}{m}=0\)。

我们将\(n,m\)写成\(k\)进制的数,然后做数位\(DP\)。先不考虑\(j\leq i\)的限制的话要好做一些,然后在减掉\(j>i\)的情况(这部分显然为0)就好了。

代码(小心爆\(long\ long\)):

#include<bits/stdc++.h>
#define ll long long using namespace std;
inline ll Get() {ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} const ll mod=1e9+7;
ll n,m,k;
ll A[100],B[100]; int d;
#define pr pair<ll,ll>
#define mp(a,b) make_pair(a,b) pr f[100][2][2];
pr dfs(int v,int flag1,int flag2) {
if(v<0) return mp(0,1);
if(f[v][flag1][flag2].first!=-1) return f[v][flag1][flag2];
int u1=(!flag1)?k-1:A[v],u2=(!flag2)?k-1:B[v];
ll ans0=0,ans1=0;
pr now;
for(int i=0;i<=u1;i++) {
for(int j=0;j<=u2;j++) {
now=dfs(v-1,flag1&&i==u1,flag2&&j==u2);
if(i<j) {
(ans0+=1ll*now.first+now.second)%=mod;
} else {
(ans0+=now.first)%=mod;
(ans1+=now.second)%=mod;
}
}
}
f[v][flag1][flag2]=mp(ans0,ans1);
return mp(ans0,ans1);
} ll cal(ll l,ll r) {return 1ll*(l+r)*(r-l+1)/2%mod;} int main() {
int T=Get();
k=Get();
while(T--) {
n=Get(),m=Get();
d=0;
ll mx=max(n,m);
while(mx) {
d++;
mx/=k;
}
d--;
ll x=n;
for(int i=0;i<=d;i++) {
A[i]=x%k;
x/=k;
}
x=m;
for(int i=0;i<=d;i++) {
B[i]=x%k;
x/=k;
}
for(int i=0;i<=d;i++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++) f[i][a][b]=mp(-1,-1);
pr ans=dfs(d,1,1);
ans.first=(ans.first-cal(max(1ll,m-n)%mod,m%mod)+mod)%mod;
cout<<ans.first<<"\n";
}
return 0;
}

UOJ 275. 【清华集训2016】组合数问题的更多相关文章

  1. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  2. UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】

    题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...

  3. BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...

  4. [UOJ#276][清华集训2016]汽水[分数规划+点分治]

    题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...

  5. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

  6. [UOJ#276]【清华集训2016】汽水

    [UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...

  7. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

  8. UOJ_274_[清华集训2016]温暖会指引我们前行_LCT

    UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...

  9. [清华集训2016]温暖会指引我们前行——LCT+最大生成树

    题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u ...

随机推荐

  1. python3 装饰器初识 NLP第三条

    还是先抄一条NLP假设... 三,有效果比有道理更重要   光说做法有道理或者正确而不顾是否有效果,是在自欺欺人. 在三赢(我好,人好,世界好)的原则基础上追求效果,比坚持什么是对的更有意义. 说道理 ...

  2. Jdk1.8中的HashMap实现原理

    HashMap概述 HashMap是基于哈希表的Map接口的非同步实现.此实现提供所有可选的映射操作,并允许使用null值和null键.此类不保证映射的顺序,特别是它不保证该顺序恒久不变. HashM ...

  3. Java数据结构和算法 - 二叉树

    前言 数据结构可划分为线性结构.树型结构和图型结构三大类.前面几篇讨论了数组.栈和队列.链表都是线性结构.树型结构中每个结点只允许有一个直接前驱结点,但允许有一个以上直接后驱结点.树型结构有树和二叉树 ...

  4. jquery删除内容是动态修改序号

    如图,点击删除图标的时候要删除当前的一条记录,同时界面上的序号要动态的排列好 以下是html结构: jquery实现思路: 首先,需要获取到当前要删除盒子的序号$indexCur,然后遍历父盒子,取出 ...

  5. Python编程Day1——计算机组成与操作系统

    一..计算机基础 二.编程与编程的目的 1.什么是语言? 一种事物与另外一种事物沟通的介质 编程语言是程序员与计算机沟通的介质 2.什么是编程? 程序员把自己想要让计算机做的事用编程语言表达出来,编程 ...

  6. 处理SQL Server中的重复行

    如果表中的数据需要基于行中的多个值具有唯一约束,则适合的解决方案将是复合健. 复合主键 使用SQL Server语法创建符合主键非常简单. create table my_parts ( id_par ...

  7. vue项目实现记住密码功能

     一.谷歌浏览的残留问题 现在很多的网站都有一个需求是记住密码这个功能,为的是避免用户下次登录的时候繁琐的输入过程. 像是一些主流的浏览器(比如Chrome)都有了这个功能,而且如果你登录了Chrom ...

  8. DSAPI 图形图像篇(上)

    彩色文字对象 基于一些特殊需求,本人开发了彩色文字对象,该功能通过类似html代码的方式指示文本,并输出图像. 我们还是先来看一张图像. 这不是文本,是通过指定文本代码输出的图像.我们来看一下实现代码 ...

  9. EF Core 快速上手——EF Core的三种主要关系类型

    系列文章 EF Core 快速上手--EF Core 入门 本节导航 三种数据库关系类型建模 Migration方式创建和习修改数据库 定义和创建应用DbContext 将复杂查询拆分为子查询   本 ...

  10. 从零开始学安全(四十三)●Wireshark分析ICMP(IP)协议

    存活时间与IP分片 这里我们首先来研究一下关于IP协议的两个非常重要的概念:存活时间与IP分片.存活时间(TTL,Time to Live)用于定义数据包的生存周期,也就是在该数据包被丢弃之前,所能够 ...