UOJ 275. 【清华集训2016】组合数问题
UOJ 275. 【清华集训2016】组合数问题
组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数。举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式:
\]
其中 \(n!=1×2×⋯×n\)。(额外的,当 n=0n=0 时, n!=1n!=1)
小葱想知道如果给定$ n,m$ 和 \(k\),对于所有的 \(0≤i≤n,0≤j≤\min\{i,m\}\)有多少对 \((i,j)\) 满足 \(C_i^j\)是 \(k\) 的倍数。
答案对 \(10^9+7\) 取模。
输入格式
第一行有两个整数 \(t,k\)其中 \(t\) 代表该测试点总共有多少组测试数据。
接下来 \(t\) 行每行两个整数 \(n,m\)。
输出格式
\(t\) 行,每行一个整数代表所有的 \(0\leq i\leq n,0\leq j\leq \min \left \{ i, m \right \}\) 中有多少对$ (i,j)\(满足\)C_i^j$是 \(k\) 的倍数。
限制与约定
对于\(100\%\) 的测试点, \(1\leq n,m\leq 10^{18},1 \leq t,k\leq 100\),且 \(k\) 是一个质数。
\(\\\)
首先考虑使用卢卡斯定理:
\]
迭代过程中只要有一位上的\(\binom{n\%k}{m\%k}=0\)那么最后的组合数就是\(k\)的倍数。当\(n<k,m<k\)时,只有\(n<m\)的情况下:\(\binom{n}{m}=0\)。
我们将\(n,m\)写成\(k\)进制的数,然后做数位\(DP\)。先不考虑\(j\leq i\)的限制的话要好做一些,然后在减掉\(j>i\)的情况(这部分显然为0)就好了。
代码(小心爆\(long\ long\)):
#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline ll Get() {ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1e9+7;
ll n,m,k;
ll A[100],B[100];
int d;
#define pr pair<ll,ll>
#define mp(a,b) make_pair(a,b)
pr f[100][2][2];
pr dfs(int v,int flag1,int flag2) {
if(v<0) return mp(0,1);
if(f[v][flag1][flag2].first!=-1) return f[v][flag1][flag2];
int u1=(!flag1)?k-1:A[v],u2=(!flag2)?k-1:B[v];
ll ans0=0,ans1=0;
pr now;
for(int i=0;i<=u1;i++) {
for(int j=0;j<=u2;j++) {
now=dfs(v-1,flag1&&i==u1,flag2&&j==u2);
if(i<j) {
(ans0+=1ll*now.first+now.second)%=mod;
} else {
(ans0+=now.first)%=mod;
(ans1+=now.second)%=mod;
}
}
}
f[v][flag1][flag2]=mp(ans0,ans1);
return mp(ans0,ans1);
}
ll cal(ll l,ll r) {return 1ll*(l+r)*(r-l+1)/2%mod;}
int main() {
int T=Get();
k=Get();
while(T--) {
n=Get(),m=Get();
d=0;
ll mx=max(n,m);
while(mx) {
d++;
mx/=k;
}
d--;
ll x=n;
for(int i=0;i<=d;i++) {
A[i]=x%k;
x/=k;
}
x=m;
for(int i=0;i<=d;i++) {
B[i]=x%k;
x/=k;
}
for(int i=0;i<=d;i++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++) f[i][a][b]=mp(-1,-1);
pr ans=dfs(d,1,1);
ans.first=(ans.first-cal(max(1ll,m-n)%mod,m%mod)+mod)%mod;
cout<<ans.first<<"\n";
}
return 0;
}
UOJ 275. 【清华集训2016】组合数问题的更多相关文章
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】
题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...
- BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
- UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...
- UOJ_274_[清华集训2016]温暖会指引我们前行_LCT
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...
- [清华集训2016]温暖会指引我们前行——LCT+最大生成树
题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u ...
随机推荐
- 浅析 jQuery 内部架构设计
jQuery 对于大家而言并不陌生,因此关于它是什么以及它的作用,在这里我就不多言了,而本篇文章的目的是想通过对源码简单的分析来讨论 jQuery 的内部架构设计,以及 jQuery 是如何利用Jav ...
- oracle 简单备注
1. 建立数据库 备注: 1) oracle 不同于mysql 可以直接create database 2) oracle 创建schema时对应一个用户,即该schema的访问用户,与用户一一对应: ...
- ReactNative之从“拉皮条”来看RN中的Spring动画
上篇博客我们聊了RN中关于Timing的动画,详情请参见于<ReactNative之结合具体示例来看RN中的的Timing动画>本篇博客我们将从一个“拉皮条”的一个动画说起,然后来看一下R ...
- PHP全栈学习笔记11
连接MySQL mysql_connect(servername,username,password); 面向对象: <?php $servername = "localhost&qu ...
- vue的基本指令
1.创建vue对象 <script src="vue.js"></script> var vm = new Vue({ el:"#ap ...
- axure授权码
授权人:University of Science and Technology of China (CLASSROOM)授权密钥:DTXRAnPn1P65Rt0xB4eTQ+4bF5IUF0gu0X ...
- 死磕 java集合之CopyOnWriteArraySet源码分析——内含巧妙设计
问题 (1)CopyOnWriteArraySet是用Map实现的吗? (2)CopyOnWriteArraySet是有序的吗? (3)CopyOnWriteArraySet是并发安全的吗? (4)C ...
- 《深入理解Java虚拟机》-----第7章 虚拟机类加载机制——Java高级开发必须懂的
代码编译的结果从本地机器码转变为字节码,是存储格式发展的一小步,却是编程语言发展的一大步. 7.1 概述 上一章我们了解了Class文件存储格式的具体细节,在Class文件中描述的各种信息,最终都需要 ...
- [开源]WinForm 控件使用总结
背景 都2019年了,还在用WinForm吗?哈哈,其实我也没在用,都是很多年前一些项目积累,所以代码写的有些屎,之所以开源出来,希望能给大家有所帮助,喜欢的话给 一个Star以资鼓励~: 具体代码: ...
- 让ASP.NET Core支持GraphQL之-GraphQL的实现原理
众所周知RESTful API是目前最流行的软件架构风格之一,它主要用于客户端和服务器交互类的软件.基于这个风格设计的软件可以更简洁,更有层次,更易于实现缓存等机制. RESTful的优越性是毋庸置疑 ...