UOJ 275. 【清华集训2016】组合数问题
UOJ 275. 【清华集训2016】组合数问题
组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数。举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选择两个物品可以有 \((1,2),(1,3),(2,3)\) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数$ C_m^n$的一般公式:
\]
其中 \(n!=1×2×⋯×n\)。(额外的,当 n=0n=0 时, n!=1n!=1)
小葱想知道如果给定$ n,m$ 和 \(k\),对于所有的 \(0≤i≤n,0≤j≤\min\{i,m\}\)有多少对 \((i,j)\) 满足 \(C_i^j\)是 \(k\) 的倍数。
答案对 \(10^9+7\) 取模。
输入格式
第一行有两个整数 \(t,k\)其中 \(t\) 代表该测试点总共有多少组测试数据。
接下来 \(t\) 行每行两个整数 \(n,m\)。
输出格式
\(t\) 行,每行一个整数代表所有的 \(0\leq i\leq n,0\leq j\leq \min \left \{ i, m \right \}\) 中有多少对$ (i,j)\(满足\)C_i^j$是 \(k\) 的倍数。
限制与约定
对于\(100\%\) 的测试点, \(1\leq n,m\leq 10^{18},1 \leq t,k\leq 100\),且 \(k\) 是一个质数。
\(\\\)
首先考虑使用卢卡斯定理:
\]
迭代过程中只要有一位上的\(\binom{n\%k}{m\%k}=0\)那么最后的组合数就是\(k\)的倍数。当\(n<k,m<k\)时,只有\(n<m\)的情况下:\(\binom{n}{m}=0\)。
我们将\(n,m\)写成\(k\)进制的数,然后做数位\(DP\)。先不考虑\(j\leq i\)的限制的话要好做一些,然后在减掉\(j>i\)的情况(这部分显然为0)就好了。
代码(小心爆\(long\ long\)):
#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline ll Get() {ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=1e9+7;
ll n,m,k;
ll A[100],B[100];
int d;
#define pr pair<ll,ll>
#define mp(a,b) make_pair(a,b)
pr f[100][2][2];
pr dfs(int v,int flag1,int flag2) {
if(v<0) return mp(0,1);
if(f[v][flag1][flag2].first!=-1) return f[v][flag1][flag2];
int u1=(!flag1)?k-1:A[v],u2=(!flag2)?k-1:B[v];
ll ans0=0,ans1=0;
pr now;
for(int i=0;i<=u1;i++) {
for(int j=0;j<=u2;j++) {
now=dfs(v-1,flag1&&i==u1,flag2&&j==u2);
if(i<j) {
(ans0+=1ll*now.first+now.second)%=mod;
} else {
(ans0+=now.first)%=mod;
(ans1+=now.second)%=mod;
}
}
}
f[v][flag1][flag2]=mp(ans0,ans1);
return mp(ans0,ans1);
}
ll cal(ll l,ll r) {return 1ll*(l+r)*(r-l+1)/2%mod;}
int main() {
int T=Get();
k=Get();
while(T--) {
n=Get(),m=Get();
d=0;
ll mx=max(n,m);
while(mx) {
d++;
mx/=k;
}
d--;
ll x=n;
for(int i=0;i<=d;i++) {
A[i]=x%k;
x/=k;
}
x=m;
for(int i=0;i<=d;i++) {
B[i]=x%k;
x/=k;
}
for(int i=0;i<=d;i++)
for(int a=0;a<=1;a++)
for(int b=0;b<=1;b++) f[i][a][b]=mp(-1,-1);
pr ans=dfs(d,1,1);
ans.first=(ans.first-cal(max(1ll,m-n)%mod,m%mod)+mod)%mod;
cout<<ans.first<<"\n";
}
return 0;
}
UOJ 275. 【清华集训2016】组合数问题的更多相关文章
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- UOJ275 [清华集训2016] 组合数问题 【Lucas定理】【数位DP】
题目分析: 我记得很久以前有人跟我说NOIP2016的题目出了加强版在清华集训中,但这似乎是一道无关的题目? 由于$k$为素数,那么$lucas$定理就可以搬上台面了. 注意到$\binom{i}{j ...
- BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
- UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...
- UOJ_274_[清华集训2016]温暖会指引我们前行_LCT
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...
- [清华集训2016]温暖会指引我们前行——LCT+最大生成树
题目链接: [清华集训2016]温暖会指引我们前行 题目大意:有$n$个点$m$次操作,每次操作分为三种:1.在$u,v$两点之间连接一条编号为$id$,长度为$l$,温度为$t$的边.2.查询从$u ...
随机推荐
- Java基础——多线程(持续更新中)
如何建立一个执行路径呢? 通过查询API文档 java.lang.Thread类 该类的描述中有创建线程的两种方式 1.继承Thread类 (1).将类声明为 Thread 的子类 (2).该子类应重 ...
- 【Android Studio安装部署系列】四十、Android Studio安装Statistic插件(统计项目总行数)
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 Android Studio 是没有提提供统计代码全部行数的功能的,但是对于开发者来说,这个功能确实必备的,Statistic统计代 ...
- libevent和libcurl实现http和https服务器 cJSON使用
前言 libevent和libcurl都是功能强大的开源库:libevent主要实现服务器,包含了select.epoll等高并发的实现:libcurl实现了curl命令的API封装,主要作为客户端. ...
- MS SQL 锁与事务
加锁的主要目的是为了防止并发操作时导致的数据不一致等问题,锁分为共享锁(S).更新锁(U).排他锁(X),共享锁与更新只是单向兼容?传说中的单相思? 事务 事务能保证数据操作的原子性,要么内部操作都提 ...
- SmartSql 入门
入门 安装 Install-Package SmartSql Install-Package SmartSql.Schema // 以及相应ADO.NET驱动 从连接字符串创建SmartSql实例 v ...
- asp.net mvc 三层加EF 登录注册 增删改查
首先打开vs软件新建项目创建web中的mvc项目再右击解决方案创建类库项目分别创建DAL层和BLL层再把DAL层和BLL层的类重命名在mvc项目中的Models文件夹创建model类在DAL创建ADO ...
- .NET Framework框架介绍
1.内容 .net framework c#和.net关系 掌握C#中命名空间2..net 就是微软提供的一个开发平台 版本: vs2008 3.5 vs2010 4.0 vs2012 2013 20 ...
- oracle学习笔记(六) JDBC使用
JDBC使用 1. 导包 直接使用IDEA导入依赖包即可 新建一个lib,把jar包放在这里 2. 加载驱动 Class.forName("oracle.jdbc.driver.Oracle ...
- Java建造(Builder)模式
一.什么是建造模式: 建造模式可以将一个产品的内部表象与产品的生成过程分割开来,从而使一个建造过程生成具有不同内部表象的产品.客户端不需要知道产品内部的结构和生产过程. 二.建造模式的结构: Buil ...
- Java运行时数据区概述
Java 虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域,这些区域都有各自的用途,如图所示: 程序计数器 程序计数器是一块比较小的内存空间,可以看作是当前线程所执行的字节 ...