转 Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。
1、softmax-loss
softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic Regression 只能用于二分类,而softmax可以用于多分类。
softmax与softmax-loss的区别:
softmax计算公式:

而softmax-loss计算公式:

关于两者的区别更加具体的介绍,可参考:softmax vs. softmax-loss
用户可能最终目的就是得到各个类别的概率似然值,这个时候就只需要一个 Softmax层,而不一定要进行softmax-Loss 操作;或者是用户有通过其他什么方式已经得到了某种概率似然值,然后要做最大似然估计,此时则只需要后面的 softmax-Loss 而不需要前面的 Softmax 操作。因此提供两个不同的 Layer 结构比只提供一个合在一起的 Softmax-Loss Layer 要灵活许多。
不管是softmax layer还是softmax-loss layer,都是没有参数的,只是层类型不同而也
softmax-loss layer:输出loss值

layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "ip1"
  bottom: "label"
  top: "loss"
}

softmax layer: 输出似然值
layers {
  bottom: "cls3_fc"
  top: "prob"
  name: "prob"
  type: “Softmax"
}
2、Inner Product
全连接层,把输入当作成一个向量,输出也是一个简单向量(把输入数据blobs的width和height全变为1)。
输入: n*c0*h*w
输出: n*c1*1*1
全连接层实际上也是一种卷积层,只是它的卷积核大小和原数据大小一致。因此它的参数基本和卷积层的参数一样。
层类型:InnerProduct
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
必须设置的参数:
num_output: 过滤器(filfter)的个数
其它参数:

layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

3、accuracy
输出分类(预测)精确度,只有test阶段才有,因此需要加入include参数。
层类型:Accuracy

layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "ip2"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}

4、reshape
在不改变数据的情况下,改变输入的维度。
层类型:Reshape
先来看例子

 layer {
    name: "reshape"
    type: "Reshape"
    bottom: "input"
    top: "output"
    reshape_param {
      shape {
        dim: 0  # copy the dimension from below
        dim: 2
        dim: 3
        dim: -1 # infer it from the other dimensions
      }
    }
  }

有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。
dim:0 表示维度不变,即输入和输出是相同的维度。
dim:2 或 dim:3 将原来的维度变成2或3
dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。
假设原数据为:64*3*28*28, 表示64张3通道的28*28的彩色图片
经过reshape变换:

   reshape_param {
      shape {
        dim: 0
        dim: 0
        dim: 14
        dim: -1
      }
    }

输出数据为:64*3*14*56
5、Dropout
Dropout是一个防止过拟合的trick。可以随机让网络某些隐含层节点的权重不工作。
先看例子:

layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7-conv"
  top: "fc7-conv"
  dropout_param {
    dropout_ratio: 0.5
  }
}

只需要设置一个dropout_ratio就可以了。
还有其它更多的层,但用的地方不多,就不一一介绍了。
随着深度学习的深入,各种各样的新模型会不断的出现,因此对应的各种新类型的层也在不断的出现。这些新出现的层,我们只有在等caffe更新到新版本后,再去慢慢地摸索了。
转 Caffe学习系列(5):其它常用层及参数的更多相关文章
- Caffe学习系列(2):数据层及参数
		要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ... 
- 转 Caffe学习系列(2):数据层及参数
		http://www.cnblogs.com/denny402/p/5070928.html 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个 ... 
- Caffe学习系列(3):视觉层(Vision Layers)及参数
		所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ... 
- 转  Caffe学习系列(3):视觉层(Vision Layers)及参数
		所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ... 
- Caffe学习系列(4):激活层(Activiation Layers)及参数
		在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ... 
- 转 Caffe学习系列(4):激活层(Activiation Layers)及参数
		在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ... 
- Caffe 学习系列
		学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ... 
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
		caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ... 
- Caffe学习系列(12):训练和测试自己的图片
		学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ... 
- 转 Caffe学习系列(12):训练和测试自己的图片
		学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ... 
随机推荐
- openvpn的搭建
			openvpn搭建 原创不易,转载请注明 openvpn简介 1.1 openvpn原理 OpenVpn的技术核心是虚拟网卡,其次是SSL协议实现 虚拟网卡是使用网络底层编程技术实现的一个驱动软件,安 ... 
- exp/imp 多用户导入导出
			创建用户 创建三个用户test1,test2,test3及表table1,table2,table3 SQL> create user test1 identified by test1 def ... 
- python绘制图形(Turtle模块)
			用python的Turtle模块可以绘制很多精美的图形,下面简单介绍一下使用方法. 需要用到的工具有python,python 的安装这里就不再细说.自行搜索. from turtle import ... 
- Yii 2.0.3 Advanced版控制器不能包含大写字母的Bug
			Yii 2.0.3 Advanced版控制器不能包含大写字母的Bug,我是直接下载Archive文件安装的,非Composer方式安装 Yii 框架之前是支持在Url中包含大写字母的 最新的Yii 2 ... 
- ABP WebApi 加载错误
			[TypeLoadException:类型'Abp.WebApi.Validation.AbpApiValidationFilter'中的方法'ExecuteActionFilterAsync'从程序 ... 
- quartz的一些记录
			定时任务总会遇到任务重叠执行的情况,比如一个任务1分钟执行一次,而任务的执行时间超过了1分钟,这样就会有两个相同任务并发执行了.有时候我们是允许这种情况的发生的,比如任务执行的代码是幂等的,而有时候我 ... 
- SPOJ Highways [矩阵树定理]
			裸题 注意: 1.消元时判断系数为0,退出 2.最后乘ans要用double.... #include <iostream> #include <cstdio> #includ ... 
- BZOJ 3790: 神奇项链 [Manacher 贪心]
			3790: 神奇项链 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 405 Solved: 200[Submit][Status][Discuss] ... 
- 六、BeautifulSoup4------自动登录网站(手动版)
			每天一个小实例:(按照教学视频上自动登录的网站,很容易就成功了.自已练习登录别的网站,问题不断) 这个自己分析登录boss直聘.我用了一下午的时间,而且还是手动输入验证码,自动识别输入验证码的还没成功 ... 
- Hive metastore源码阅读(一)
			不要问我为什么,因为爱,哈哈哈哈...进入正题,最近做项目顺带学习了下hive metastore的源码,进行下知识总结. hive metastore的整体架构如图: 一.组成结构: 如图我们可以看 ... 
