[BZOJ3000] Big Number (Stirling公式)
Description
Input
有多组输入数据,每组输入数据各一行,每行两个数——N,K
Output
每行一个数为输出结果。
Sample Input
2 10
10 10
100 200
Sample Output
1
7
69
HINT
Source
Solution
安利一个高深的公式:Stirling公式
用这个公式,当n较大时很精确,而且n较小时误差也不大。
这道题的答案是 logk(n!)+1
= logk((2πn)0.5 * (n/e)n)
#include <bits/stdc++.h>
using namespace std;
const double PI = acos(-1.0), E = exp(1.0);
double log(double a, double b)
{
return log(b) / log(a);
} int main()
{
double n, k, ans;
while(cin >> n >> k)
{
ans = ;
if(n <= )
for(double i = ; i <= n; i += )
ans += log(k, i);
else
{
ans += log(k, * PI * n) / ;
ans += n * (log(k, n) - log(k, E));
}
cout << (long long)ans << endl;
}
return ;
}
[BZOJ3000] Big Number (Stirling公式)的更多相关文章
- POJ1423 - Big Number(Stirling公式)
题目大意 求N!有多少位 题解 用公式直接秒杀... 代码: #include<iostream> #include<cmath> using namespace std; # ...
- BZOJ3000 Big Number
由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...
- 斯特林公式 ——Stirling公式(取N阶乘近似值)(转)
斯特灵公式是一条用来取n阶乘近似值的数学公式.一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用.从图中可以看出,即使在n很小的时候,斯特灵公式的取值已经十分准确. 公式为: ...
- [POJ1423]Stirling公式的应用
Stirling公式: n!约等于sqrt(2*pi*n)*(n/e)^n 另外,e约等于2.71828182845409523... 试了一下发现math库里面并不能像pi一样直接调e但是发现挺好记 ...
- bzoj3000 Big Number 数论,斯特林公式
Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果 Sample In ...
- 斯特林(Stirling)公式 求大数阶乘的位数
我们知道整数n的位数的计算方法为:log10(n)+1n!=10^m故n!的位数为 m = log10(n!)+1 lgN!=lg1+lg2+lg3+lg4+lg5+................. ...
- HDU 1018 Big Number(数论,Stirling公式)
1. 利用数学公式lg(n!)=lg(2)+lg(3)+....+lg(n) 求解 2.
- 斯特林公式 ——Stirling公式(取N阶乘近似值)
- [BZOJ3000]Big Number(斯特林公式)
求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...
随机推荐
- 修改MacBook Pro主机名,共享电脑名
https://support.apple.com/kb/PH25384?viewlocale=zh_CN&locale=zh_CN http://www.ituring.com.cn/art ...
- fifteen-puzzle
http://www.math.ubc.ca/~cass/courses/m308-02b/projects/grant/fifteen.html http://jamie-wong.com/2011 ...
- Git 如何 clone 非 master 分支的代码
问题描述 我们每次使用命令 git clone git@gitlab.xxx.com:xxxxx.git 默认 clone 的是这个仓库的 master 分支.如果最新的代码不在 master 分支上 ...
- Halcon一日一练:图像拼接技术
图像拼接技术就是针对同一场景的一系列图片,根据图片的特征,比如位置,重叠部分等,拼接成一张大幅的宽视角的图像. 图像拼接要求拼接后图像最大程度的与原图一致,失真尽可能的小,并且要尽量做到天衣无缝即没有 ...
- 《HelloGitHub》第 23 期
公告 新的一年,不忘初心,从新开始.加油! <HelloGitHub>第 23 期 兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的 ...
- 树莓派系列教程:1.环境与系统,无显示器无键盘无网线联网并使用PuTTy与VNC图形界面远程登录
本文所需物品清单: Raspberry Pi 3 Model B 主板.SD卡与读卡器(用于烧录系统) 资料整理来源在文尾 需要下载的资源与工具: 推荐系统-Raspbian 树莓派官方深度定制的硬件 ...
- java7 - JDK
一.学习大纲: 1. 熟练使用 JDK 文档 2. 软件包 java.lang 提供利用 Java 编程语言进行程序设计的基础类. 3. 软件包 java.math 提供用于执行任意精度整数算法 (B ...
- GCC精彩之旅_1
说明: 本文共两篇,转自GCC精彩之旅.第一篇着重介绍GCC编译一个程序的过程与优化,第二篇侧重在GCC结合GDB对代码的调试. 在为Linux开发应用程序时,绝大多数情况下使用的都是C语言,因此几乎 ...
- 2道acm编程题(2014):1.编写一个浏览器输入输出(hdu acm1088);2.encoding(hdu1020)
//1088(参考博客:http://blog.csdn.net/libin56842/article/details/8950688)//1.编写一个浏览器输入输出(hdu acm1088)://思 ...
- PAT1001 A+B Format
思路:每三位分割,注意符号,首位不要出现逗号. AC代码 #include <stdio.h> #include <algorithm> using namespace std ...