https://www.luogu.org/problemnew/show/P4424

题解

我们首先按位考虑。

如果有一位最终的结果为1,那么我们可以把树的序列看成一个二进制数,先出现的在底位,后出现的在高位,操作序列也可以看做一个二进制数,\(and\)为1,\(or\)为0,先出现的在低位,后出现的在高位。

首先操作序列是不可能把0变成1的,那么要使最后的结果为1,就得考虑数字序列最高位的1,那么如果操作序列的更高位有1,结果肯定会变成0,否则如果操作序列这一位不是1,那么结果肯定是1。

如果这两种情况都不是,那么说明这一位操作序列和数字序列都是1,这时就得往低位继续判断。

如此归纳下去,如果需要满足这一位为1,必须要求数字序列>操作序列。

再考虑多位的情况,相当于是有很多的限制。

这样我们就会得到一个性质,合法的序列是一段连续的二进制数。

我们直接把所有序列拍完序后对每个询问暴力扫就好了。

注意边界!!!!

代码

#include<bits/stdc++.h>
#define N 5009
#define M 1009
using namespace std;
typedef long long ll;
const int mod=1000000007;
char s[N];
int n,m,q,rnk[N];
ll ji[N],cnt[N];
inline void MOD(ll &x){x=x>=mod?x-mod:x;}
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
struct skr{
int a[M],id;
inline bool operator <(const skr &b)const{
for(int i=1;i<=n;++i)if(a[i]!=b.a[i])return a[i]>b.a[i];
return 0;
}
}a[N];
int main(){
n=rd();m=rd();q=rd();
ji[0]=1;
for(int i=1;i<=n;++i)ji[i]=ji[i-1]*2%mod;
for(int i=1;i<=n;++i){
scanf("%s",s+1);
for(int j=1;j<=m;++j){
a[j].a[n-i+1]=s[j]^48;
}
}
for(int i=1;i<=m;++i)a[i].id=i;
sort(a+1,a+m+1);
for(int i=1;i<=m;++i)rnk[a[i].id]=i;
for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)if(a[i].a[j])MOD(cnt[i]+=ji[n-j]);
for(int j=1;j<=n;++j)MOD(cnt[0]+=ji[n-j]);MOD(cnt[0]+=1);
while(q--){
scanf("%s",s+1);
int L=m+1,R=0;
for(int i=1;i<=m;++i)
if(s[i]=='1')R=max(R,rnk[i]);
else L=min(L,rnk[i]);
if(R>L)puts("0");
else printf("%lld\n",(cnt[R]-cnt[L]+mod)%mod);
}
return 0;
}

HNOI2018寻宝游戏的更多相关文章

  1. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  2. 5285: [Hnoi2018]寻宝游戏

    5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...

  3. BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)

    BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...

  4. bzoj 5285: [Hnoi2018]寻宝游戏

    Description Solution 把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵 把每一列压成一个二进制数,其中最高位是最下面的元素 然后就有了 \(m\) 个二进制数 ...

  5. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

  6. [HNOI2018]寻宝游戏

    Description: 给出\(n\)个长为\(m\)的01串,第0个为0,同时给出\(q\)个询问串,每次向其中添加\(n\)个\(\&\)或\(|\)符号,求使这些串按顺序运算得到询问串 ...

  7. 【比赛】HNOI2018 寻宝游戏

    考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...

  8. [HNOI2018]寻宝游戏(题解转载自别处)

    题解(自别处转载): Luogu CSDN 这题关键是将运算符也替换成0,1 然后在运算符与原串混杂里找规律. 而且替换的方式也有所要求,考场上两种替换方式都要尝试. #include <bit ...

  9. 【题解】HNOI2018寻宝游戏

    太厉害啦……感觉看到了正解之后整个人都惊呆了一样.真的很强%%% 首先要注意到一个性质.位运算列与列之间是不会相互影响的,那么我们先观察使一列满足条件的操作序列需要满足什么条件.&0时,不论之 ...

随机推荐

  1. 根据URL获取图片

    背景:今天因为生产环境的系统界面图片无法显示被领导叼了一波,之前用Hutool工具类解析URL获取图片的,在生产环境上跑了一个多月都正常,嘣,今天突然发现周六下午后的图片统统显示异常,之后改为用jav ...

  2. css的三种书写方式

    一.内联样式 <p style="color: sienna; margin-left: 20px"> This is a paragraph </p> 二 ...

  3. APP 技术支持

    APP使用过程中,有任何问题,可以在此博客下方留言. 或者,发送邮件到邮箱:nbglsoft@163.com 反馈的任何问题,我们将在2个工作日内进行响应. 感谢大家的支持!

  4. Windows下创建ArcGIS Server站点

    原创文章,转载须标明出处自: https://www.cnblogs.com/gisspace/p/8126261.html ------------------------------------- ...

  5. LAMP动静分离安装(源码安装)

    环境: 版本 IP地址 源码包版本 Centos7.5_mysql 192.168.111.3 mysql-5.7.24.tar.gz,cmake-3.13.1.tar.gz,boost_1_59_0 ...

  6. Python之python的一些理解

    应用领域: 1. 网络爬虫 2. 大数据分析与挖掘 3. 机器学习 4. web应用 5. 游戏开发 6. 自动化运维 入门学习网站: imooc,廖雪峰,黑马 环境变量 --- 就是告诉电脑,你的程 ...

  7. SSIS中xml的输入输出

    输出为XML的两种方法 1.用数据流, 将平面文件作为DES输出 在SQL里将要输出的数据查询成为单列的字符串: SELECT (SELECT * FROM A FOR XML ROOT('A'),E ...

  8. angularjs兼容thickbox 插件

    ThickBox是一个基于JQuery类库的扩展,它能在浏览器界面上显示非常棒的UI框, 它可以显示单图片,多图片,ajax请求内容或链接内容.ThickBox 是用超轻量级的 jQuery 库 编写 ...

  9. 这可能是最简单的Page Object库

    做过web自动化测试的同学,对Page object设计模式应该不陌生. Page object库应该根据以下目标开发: Page object应该易于使用 清晰的结构 PageObjects 对于页 ...

  10. 01构建第一个SpringBoot工程

    第一篇:构建第一个SpringBoot工程 文章指导 学习笔记 学习代码 创建项目 创建工程:Idea-> new Project ->Spring Initializr ->填写g ...