在图像滤波中,人们最希望的就是可以将图像中的噪声过滤掉的同时,能够让边缘尽可能的保持。噪声属于高频信号,而边缘其实也是一种高频信号,所以一般的滤波器,比如高斯模糊,均值模糊,都是一种低通滤波器,能够将高频信号做平滑处理,这些kernel在将噪声滤掉的同时,也会将边缘模糊掉,所以保边滤波器的设计一直是图像滤波的重点。

导向滤波是非常有名的一种保边滤波器,与传统的高斯滤波,均值滤波独立于图像的内容不同,导向滤波的 kernel 基于一个 guided image, 简单来说,就是给定一个 guided image I, 一个 input image p, 我们能够得到一个 output image q .

qi=∑jWijpj

i,j 表示像素的索引,Wij 是一个滤波系数,由 guided image I 决定,而与输入图像 p 无关。双边滤波器就是类似这样的一种滤波器,我们可以定义:

Wbfij(I)=1Kiexp(−|xi−xj|2σ2s)exp(−|Ii−Ij|2σ2r)

当 I 和 p 一样的时候,上式就是最原始的双边滤波器的表达式,xi,xj 表示像素的坐标,Ki 是一个归一化的系数,σs 控制像素空间的相似性, σr 控制像素值的相似性。

接下来,我们可以定义导向滤波器以及它的核函数,具体的定义形式如下:

qi=akIi+bk,∀i∈wk

这个表达式意味着,在一个局部区域 wk,导向分量 Ii 和输出 qi 是层线性关系的,

上式保证 了 ▽q=a▽I,意味着输出 q 和 导向图 I 具有同样的边界性质,

为了求解线性系数 ak,bk, 我们可以定义如下的能量函数:

E(ak,bk)=∑i∈wk((akIi+bk−pi)2+ϵa2k)

一般来说,ϵa2k 是一个正则项,以防止 ak 太大,最后利用线性回归,我们可以得到:

ak=1|w|∑i∈wkIipi−μkpk¯σ2k+ϵ
bk=pk¯−akμk

μk,σ2k 是导向图 I 在一个局部区域 wk 的均值和方差,|w| 是局部区域的像素个数,pk¯=1|w|∑i∈wkpi 是输入图 p 在局部区域的均值。

我们可以把这个线性模型应用到整张图像的所有局部区域,但是,由于一个像素点 i 可以同时属于很多不同的局部区域,而且每个局部区域计算出来的 qi 是不一样的,一个简单有效的方法,就是对含有像素点 i 的所有局部区域计算一个 线性模型,然后取平均值:

qi=1|w|∑k:i∈wk(akIi+bk)=ai¯Ii+bi¯
ai¯=1|w|∑k∈wiak
bi¯=1|w|∑k∈wibk

最后奉上代码:

function q = guidedfilter(I, p, r, eps)
%   GUIDEDFILTER   O(1) time implementation of guided filter.
%
%   - guidance image: I (should be a gray-scale/single channel image)
%   - filtering input image: p (should be a gray-scale/single channel image)
%   - local window radius: r
%   - regularization parameter: eps

[hei, wid] = size(I);
N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary pixels.

mean_I = boxfilter(I, r) ./ N;
mean_p = boxfilter(p, r) ./ N;
mean_Ip = boxfilter(I.*p, r) ./ N;
cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local patch.

mean_II = boxfilter(I.*I, r) ./ N;
var_I = mean_II - mean_I .* mean_I;

a = cov_Ip ./ (var_I + eps); % Eqn. (5) in the paper;
b = mean_p - a .* mean_I; % Eqn. (6) in the paper;

mean_a = boxfilter(a, r) ./ N;
mean_b = boxfilter(b, r) ./ N;

q = mean_a .* I + mean_b; % Eqn. (8) in the paper;
end

function imDst = boxfilter(imSrc, r)

%   BOXFILTER   O(1) time box filtering using cumulative sum
%
%   - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));
%   - Running time independent of r;
%   - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);
%   - But much faster.

[hei, wid] = size(imSrc);
imDst = zeros(size(imSrc));

%cumulative sum over Y axis
imCum = cumsum(imSrc, 1);
%difference over Y axis
imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);

%cumulative sum over X axis
imCum = cumsum(imDst, 2);
%difference over Y axis
imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end

可以看到,guided image filtering 的代码实现还是很简单的,就是基于box filter。

Guided Image Filtering的更多相关文章

  1. 引导图滤波(Guided Image Filtering)原理以及OpenCV实现

    引导图是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献<Guided Image Filtering>.这里只说一下自适应权重原理.C++实现灰度图 ...

  2. Gradient Domain Guided Image Filtering(梯度域导向滤波)

    作者提出了一种新的梯度域引导图像滤波器,通过将明确的一阶边缘感知约束结合到现有的引导图像滤波器中. matlab代码实现 转载至:https://blog.csdn.net/majinlei121/a ...

  3. 基于暗通道优先算法的去雾应用(Matlab/C++)

    基于暗通道优先的单幅图像去雾算法(Matlab/C++) 算法原理:             参见论文:Single Image Haze Removal Using Dark Channel Pri ...

  4. 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果(速度可实时)

    最新的效果见 :http://video.sina.com.cn/v/b/124538950-1254492273.html 可处理视频的示例:视频去雾效果 在图像去雾这个领域,几乎没有人不知道< ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

  7. 计算机视觉与模式识别代码合集第二版one

    Topic Name Reference code Feature Detection, Feature Extraction, and Action Recognition Space-Time I ...

  8. Single Image Haze Removal Using Dark Channel Prior

    <Single Image Haze Removal Using Dark Channel Prior>一文中图像去雾算法的原理.实现.效果及其他. Posted on 2013-08-2 ...

  9. CV code references

    转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SI ...

随机推荐

  1. UVa 815 洪水!

    https://vjudge.net/problem/UVA-815 题意:一个n*m的方格区域,共有n*m个方格,每个方格是边长为10米的正方形,整个区域的外围是无限高的高墙,给出这n*m个方格的初 ...

  2. React Native的SliderIOS滑块组件

    import React,{Component}from 'react'; import { AppRegistry, StyleSheet, Text, View, SliderIOS, } fro ...

  3. Linux进程内存布局(翻译)

    Anatomy of a Program in Memory 在一个多任务OS中,每个进程都运行在它自己的内存沙箱中.这个沙箱就是虚拟地址空间,在32位下就是一块容量为4GB的内存地址.内核将这些虚拟 ...

  4. sudo: unable to resolve host myhostname: Connection timed out

    第一种 原因,/etc/hostname 中的hostname 与/etc/hosts 里面的不对应,导致无法解析 将两个文件的hostname改成一样的即可. /etc/hostname aaa / ...

  5. c++ 返回指定元素连续相等的位置索引(equal_range)

    #include <iostream> // cout #include <algorithm> // equal_range, sort #include <vecto ...

  6. 大数据学习:storm流式计算

    Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的, ...

  7. Codeforces 862B - Mahmoud and Ehab and the bipartiteness

    862B - Mahmoud and Ehab and the bipartiteness 思路:先染色,然后找一种颜色dfs遍历每一个点求答案. 代码: #include<bits/stdc+ ...

  8. js 基础数据类型和引用类型 ,深浅拷贝问题,以及内存分配问题

    js 深浅拷贝问题 浅拷贝一般指的是基本类型的复制 深拷贝一般指引用类型的拷贝,把引用类型的值也拷贝出来 举例 h5的sessionStorage只能存放字符串,所以要存储json时就要把json使用 ...

  9. eclipse启动时弹出Failed to create the Java Virtual Machine

    eclipse启动时弹出Failed to create the Java Virtual Machine 一.现象 今天装eclipse的时候出现Failed to create the Java ...

  10. mount: unknown filesystem type 'LVM2_member'解决方案【转】

    一台服务器,普通/dev/sda1/2(硬盘一) 同步数据到 lvm_member(硬盘二) rsync两硬盘数据同步: From: http://hi.baidu.com/williwill/ite ...