在图像滤波中,人们最希望的就是可以将图像中的噪声过滤掉的同时,能够让边缘尽可能的保持。噪声属于高频信号,而边缘其实也是一种高频信号,所以一般的滤波器,比如高斯模糊,均值模糊,都是一种低通滤波器,能够将高频信号做平滑处理,这些kernel在将噪声滤掉的同时,也会将边缘模糊掉,所以保边滤波器的设计一直是图像滤波的重点。

导向滤波是非常有名的一种保边滤波器,与传统的高斯滤波,均值滤波独立于图像的内容不同,导向滤波的 kernel 基于一个 guided image, 简单来说,就是给定一个 guided image I, 一个 input image p, 我们能够得到一个 output image q .

qi=∑jWijpj

i,j 表示像素的索引,Wij 是一个滤波系数,由 guided image I 决定,而与输入图像 p 无关。双边滤波器就是类似这样的一种滤波器,我们可以定义:

Wbfij(I)=1Kiexp(−|xi−xj|2σ2s)exp(−|Ii−Ij|2σ2r)

当 I 和 p 一样的时候,上式就是最原始的双边滤波器的表达式,xi,xj 表示像素的坐标,Ki 是一个归一化的系数,σs 控制像素空间的相似性, σr 控制像素值的相似性。

接下来,我们可以定义导向滤波器以及它的核函数,具体的定义形式如下:

qi=akIi+bk,∀i∈wk

这个表达式意味着,在一个局部区域 wk,导向分量 Ii 和输出 qi 是层线性关系的,

上式保证 了 ▽q=a▽I,意味着输出 q 和 导向图 I 具有同样的边界性质,

为了求解线性系数 ak,bk, 我们可以定义如下的能量函数:

E(ak,bk)=∑i∈wk((akIi+bk−pi)2+ϵa2k)

一般来说,ϵa2k 是一个正则项,以防止 ak 太大,最后利用线性回归,我们可以得到:

ak=1|w|∑i∈wkIipi−μkpk¯σ2k+ϵ
bk=pk¯−akμk

μk,σ2k 是导向图 I 在一个局部区域 wk 的均值和方差,|w| 是局部区域的像素个数,pk¯=1|w|∑i∈wkpi 是输入图 p 在局部区域的均值。

我们可以把这个线性模型应用到整张图像的所有局部区域,但是,由于一个像素点 i 可以同时属于很多不同的局部区域,而且每个局部区域计算出来的 qi 是不一样的,一个简单有效的方法,就是对含有像素点 i 的所有局部区域计算一个 线性模型,然后取平均值:

qi=1|w|∑k:i∈wk(akIi+bk)=ai¯Ii+bi¯
ai¯=1|w|∑k∈wiak
bi¯=1|w|∑k∈wibk

最后奉上代码:

function q = guidedfilter(I, p, r, eps)
%   GUIDEDFILTER   O(1) time implementation of guided filter.
%
%   - guidance image: I (should be a gray-scale/single channel image)
%   - filtering input image: p (should be a gray-scale/single channel image)
%   - local window radius: r
%   - regularization parameter: eps

[hei, wid] = size(I);
N = boxfilter(ones(hei, wid), r); % the size of each local patch; N=(2r+1)^2 except for boundary pixels.

mean_I = boxfilter(I, r) ./ N;
mean_p = boxfilter(p, r) ./ N;
mean_Ip = boxfilter(I.*p, r) ./ N;
cov_Ip = mean_Ip - mean_I .* mean_p; % this is the covariance of (I, p) in each local patch.

mean_II = boxfilter(I.*I, r) ./ N;
var_I = mean_II - mean_I .* mean_I;

a = cov_Ip ./ (var_I + eps); % Eqn. (5) in the paper;
b = mean_p - a .* mean_I; % Eqn. (6) in the paper;

mean_a = boxfilter(a, r) ./ N;
mean_b = boxfilter(b, r) ./ N;

q = mean_a .* I + mean_b; % Eqn. (8) in the paper;
end

function imDst = boxfilter(imSrc, r)

%   BOXFILTER   O(1) time box filtering using cumulative sum
%
%   - Definition imDst(x, y)=sum(sum(imSrc(x-r:x+r,y-r:y+r)));
%   - Running time independent of r;
%   - Equivalent to the function: colfilt(imSrc, [2*r+1, 2*r+1], 'sliding', @sum);
%   - But much faster.

[hei, wid] = size(imSrc);
imDst = zeros(size(imSrc));

%cumulative sum over Y axis
imCum = cumsum(imSrc, 1);
%difference over Y axis
imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);

%cumulative sum over X axis
imCum = cumsum(imDst, 2);
%difference over Y axis
imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end

可以看到,guided image filtering 的代码实现还是很简单的,就是基于box filter。

Guided Image Filtering的更多相关文章

  1. 引导图滤波(Guided Image Filtering)原理以及OpenCV实现

    引导图是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献<Guided Image Filtering>.这里只说一下自适应权重原理.C++实现灰度图 ...

  2. Gradient Domain Guided Image Filtering(梯度域导向滤波)

    作者提出了一种新的梯度域引导图像滤波器,通过将明确的一阶边缘感知约束结合到现有的引导图像滤波器中. matlab代码实现 转载至:https://blog.csdn.net/majinlei121/a ...

  3. 基于暗通道优先算法的去雾应用(Matlab/C++)

    基于暗通道优先的单幅图像去雾算法(Matlab/C++) 算法原理:             参见论文:Single Image Haze Removal Using Dark Channel Pri ...

  4. 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果(速度可实时)

    最新的效果见 :http://video.sina.com.cn/v/b/124538950-1254492273.html 可处理视频的示例:视频去雾效果 在图像去雾这个领域,几乎没有人不知道< ...

  5. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  6. paper 105: 《Single Image Haze Removal Using Dark Channel Prior》一文中图像去雾算法的原理、实现、效果及其他

    在图像去雾这个领域,几乎没有人不知道<Single Image Haze Removal Using Dark Channel Prior>这篇文章,该文是2009年CVPR最佳论文.作者 ...

  7. 计算机视觉与模式识别代码合集第二版one

    Topic Name Reference code Feature Detection, Feature Extraction, and Action Recognition Space-Time I ...

  8. Single Image Haze Removal Using Dark Channel Prior

    <Single Image Haze Removal Using Dark Channel Prior>一文中图像去雾算法的原理.实现.效果及其他. Posted on 2013-08-2 ...

  9. CV code references

    转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction:   SIFT [1] [Demo program][SI ...

随机推荐

  1. 【hbuilder】如何根据Geolocation获得的坐标获取所在城市?

    第一步通过mui.plusReady[表示页面加载事件]调用hbuilder提供的百度定位 mui.plusReady(function() { plus.geolocation.getCurrent ...

  2. 关于C++中的友元函数的总结

    1.友元函数的简单介绍 1.1为什么要使用友元函数 在实现类之间数据共享时,减少系统开销,提高效率.如果类A中的函数要访问类B中的成员(例如:智能指针类的实现),那么类A中该函数要是类B的友元函数.具 ...

  3. R语言 sub与gsub函数的区别

    > text <- c("we are the world", "we are the children") > sub("w&qu ...

  4. STL_算法_中使用的函数对象

    写在前面: STL算法中的 函数对象的功能: (1).都是提供一种比较的函数,比较相邻的左右两个值的 相等/大小 等的关系, (2).返回值都是bool :该返回值 貌似是指明 遍历元素是否还要继续往 ...

  5. Oracle数据库system用户忘记了密码怎么办

    1.在运行里面输入cmd调出dos窗口,然后在dos窗口中输入sqlplus /nolog 如:D:\oracle\ora92\bin>sqlplus /nolog 2.输入连接命令 如:SQL ...

  6. org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): 问题解决方法

    在用maven配置mybatis环境时出现此BindingExceptiony异常,发现在classes文件下没有mapper配置文件,应该是maven项目没有扫描到mapper包下的xml文件,在p ...

  7. Jmeter JDBC的使用

    1.当我们在对接口进行断言或进行多个接口串联时,常常会需要从DB查询数据来做辅助,连接JDBC需要有支持DB的jar包:官网下载地址:https://dev.mysql.com/downloads/c ...

  8. android--------自定义控件ListView实现下拉刷新和上拉加载

    开发项目过程中基本都会用到listView的下拉刷新和上滑加载更多,为了方便重写的ListView来实现下拉刷新,同时添加了上拉自动加载更多的功能. Android下拉刷新可以分为两种情况: 1.获取 ...

  9. Python在七牛云平台的应用(二)图片瘦身

    (一)七牛云平台的图片瘦身功能简介:(引用自官网) 针对jpeg.png格式图片 瘦身后分辨率不变,格式不变. 肉眼画质不变. 图片体积大幅减少,节省 CDN 流量 官网给的图片压缩率很高,官网给的「 ...

  10. nyoj-1367-河南省第十一届省赛-E物流配送-最小费用流

    1367-物流配送 内存限制:128MB 时间限制:8000ms 特判: No通过数:1 提交数:1 难度:4 题目描述: 物流配送是物流活动中一种非单一的业务形式,它与物品流动.资金流动紧密结合.备 ...