scipy cluster库简介

scipy.cluster是scipy下的一个做聚类的package, 共包含了两类聚类方法: 
1. 矢量量化(scipy.cluster.vq):支持vector quantization 和 k-means 聚类方法 
2. 层次聚类(scipy.cluster.hierarchy):支持hierarchical clustering 和 agglomerative clustering(凝聚聚类)

聚类方法实现:k-means和hierarchical clustering.

###cluster.py
#导入相应的包
import scipy
import scipy.cluster.hierarchy as sch
from scipy.cluster.vq import vq,kmeans,whiten
import numpy as np
import matplotlib.pylab as plt #生成待聚类的数据点,这里生成了20个点,每个点4维:
points=scipy.randn(20,4) #1. 层次聚类
#生成点与点之间的距离矩阵,这里用的欧氏距离:
disMat = sch.distance.pdist(points,'euclidean')
#进行层次聚类:
Z=sch.linkage(disMat,method='average')
#将层级聚类结果以树状图表示出来并保存为plot_dendrogram.png
P=sch.dendrogram(Z)
plt.savefig('plot_dendrogram.png')
#根据linkage matrix Z得到聚类结果:
cluster= sch.fcluster(Z, t=1, 'inconsistent') print "Original cluster by hierarchy clustering:\n",cluster #2. k-means聚类
#将原始数据做归一化处理
data=whiten(points) #使用kmeans函数进行聚类,输入第一维为数据,第二维为聚类个数k.
#有些时候我们可能不知道最终究竟聚成多少类,一个办法是用层次聚类的结果进行初始化.当然也可以直接输入某个数值.
#k-means最后输出的结果其实是两维的,第一维是聚类中心,第二维是损失distortion,我们在这里只取第一维,所以最后有个[0]
centroid=kmeans(data,max(cluster))[0] #使用vq函数根据聚类中心对所有数据进行分类,vq的输出也是两维的,[0]表示的是所有数据的label
label=vq(data,centroid)[0] print "Final clustering by k-means:\n",label
 

在Terminal中输入:python cluster.py 
输出: 
Original cluster by hierarchy clustering: 
[4 3 3 1 3 3 2 3 2 3 2 3 3 2 3 1 3 3 2 2] 
Final clustering by k-means: 
[1 2 1 3 1 2 0 2 0 0 0 2 1 0 1 3 2 2 0 0] 
数值是随机标的,不用看,只需要关注同类的是哪些.可以看出层次聚类的结果和k-means还是有区别的.


补充:一些函数的用法

1.linkage(y, method=’single’, metric=’euclidean’) 
共包含3个参数: 
y是距离矩阵,由pdist得到;method是指计算类间距离的方法,比较常用的有3种: 
(1)single:最近邻,把类与类间距离最近的作为类间距 
(2)complete:最远邻,把类与类间距离最远的作为类间距 
(3)average:平均距离,类与类间所有pairs距离的平均

其他的method还有如weighted,centroid等等,具体可以参考: http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage

2.fcluster(Z, t, criterion=’inconsistent’, depth=2, R=None, monocrit=None) 
第一个参数Z是linkage得到的矩阵,记录了层次聚类的层次信息; t是一个聚类的阈值-“The threshold to apply when forming flat clusters”,在实际中,感觉这个阈值的选取还是蛮重要的.另外,scipy提供了多种实施阈值的方法(criterion):

inconsistent : If a cluster node and all its descendants have an inconsistent value less than or equal to t then all its leaf descendants belong to the same flat cluster. When no non-singleton cluster meets this criterion, every node is assigned to its own cluster. (Default)

distance : Forms flat clusters so that the original observations in each flat cluster have no greater a cophenetic distance than t.

……

其他的参数我用的是默认的,具体可以参考: 
http://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html#scipy.cluster.hierarchy.fcluster

3.kmeans(obs, k_or_guess, iter=20, thresh=1e-05, check_finite=True) 
输入obs是数据矩阵,行代表数据数目,列代表特征维度; k_or_guess表示聚类数目;iter表示循环次数,最终返回损失最小的那一次的聚类中心; 
输出有两个,第一个是聚类中心(codebook),第二个是损失distortion,即聚类后各数据点到其聚类中心的距离的加和.

4.vq(obs, code_book, check_finite=True) 
根据聚类中心将所有数据进行分类.obs为数据,code_book则是kmeans产生的聚类中心. 
输出同样有两个:第一个是各个数据属于哪一类的label,第二个和kmeans的第二个输出是一样的,都是distortion

【转】使用scipy进行层次聚类和k-means聚类的更多相关文章

  1. ML: 聚类算法-K均值聚类

    基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...

  2. 聚类之K均值聚类和EM算法

    这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...

  3. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  4. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

  5. 机器学习之K均值聚类

      聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想   K均值聚类的基本思想是,通过迭代的方法寻找K个 ...

  6. ML: 聚类算法R包-K中心点聚类

    K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值, ...

  7. 100天搞定机器学习|day44 k均值聚类数学推导与python实现

    [如何正确使用「K均值聚类」? 1.k均值聚类模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的类或簇中,每个样本到其所属类的中心的距离最小,每个样本只能属于一个类.用C表示 ...

  8. SciPy k均值聚类

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. K均值聚类的失效性分析

    K均值聚类是一种应用广泛的聚类技术,特别是它不依赖于任何对数据所做的假设,比如说,给定一个数据集合及对应的类数目,就可以运用K均值方法,通过最小化均方误差,来进行聚类分析. 因此,K均值实际上是一个最 ...

随机推荐

  1. android 4.4 支持透明状态栏和透明导航栏

    @Override protected void onCreate(Bundle savedInstanceState) {        super.onCreate(savedInstanceSt ...

  2. Linux中断的系统调用

    早期UNIX系统的一个特性是:如果在进程执行一个低速系统调用而阻塞期间捕捉到一个信号,则该系统调用就被中断不再继续执行.该系统调用返回出错,其errno设置为EINTR.这样处理的理由是:因为一个信号 ...

  3. hashCode方法

    hashCode方法: 当覆写(override)了equals()方法之后,必须也覆写hashCode()方法,反之亦然.这个方法返回一个整型值(hash code value),如果两个对象被eq ...

  4. [转] Spring4.3.x 浅析xml配置的解析过程(6)——解析context命名空间之property-placeholder和property-override标签

    在上一篇解析自定义命名空间的标签中,我们已经知道解析自定义命名空间的标签需要用到NamespaceHandler接口的实现类,并且知道spring是如何获取命名空间对应的命名空间处理器对象的.因此我们 ...

  5. C#基础第六天-作业-利用面向对象的思想去实现名片

    1.利用面向对象的思想去实现: (增加,修改,删除,查询,查询全部)需求:根据人名去(删除/查询).指定列:姓名,年龄,性别,爱好,电话. 本系列教程: C#基础总结之八面向对象知识点总结-继承与多态 ...

  6. 给Elasticsearch 5.2.2 设置用户权限 how to setting security for elasticsearch on windows

    1. download the plugin of elasticsearch: 下载 readonlyrest-1.14.0_es5.2.2.zip 2. install readonlyrest ...

  7. grafana 的面板设置

    1.工作中我们会计算连个字段的四则运算

  8. Subclipse和TortoiseSVN版本不一致导致升到高版本的project后,低版本svn客户端无法使用。

  9. webBrowser获取cookie

    private void BtnOpenUrl_Click(object sender, EventArgs e) { if (txtUrl.Text != "") { Myweb ...

  10. 浅谈HTML5 WebSocket的机制

    回想上一章 在上一章<为什么我们须要HTML5 WebSocket>中,我简单的介绍了下WebSocket的前世今生.相信大家已对WebSocket有了初步的了解.那么今天我们继续深入学习 ...