Treasure Hunt
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 8192   Accepted: 3376

Description

Archeologists from the Antiquities and Curios Museum (ACM) have flown to Egypt to examine the great pyramid of Key-Ops. Using state-of-the-art technology they are able to determine that the lower floor of the pyramid is constructed from a series of straightline walls, which intersect to form numerous enclosed chambers. Currently, no doors exist to allow access to any chamber. This state-of-the-art technology has also pinpointed the location of the treasure room. What these dedicated (and greedy) archeologists want to do is blast doors through the walls to get to the treasure room. However, to minimize the damage to the artwork in the intervening chambers (and stay under their government grant for dynamite) they want to blast through the minimum number of doors. For structural integrity purposes, doors should only be blasted at the midpoint of the wall of the room being entered. You are to write a program which determines this minimum number of doors. 
An example is shown below: 

Input

The input will consist of one case. The first line will be an integer n (0 <= n <= 30) specifying number of interior walls, followed by n lines containing integer endpoints of each wall x1 y1 x2 y2 . The 4 enclosing walls of the pyramid have fixed endpoints at (0,0); (0,100); (100,100) and (100,0) and are not included in the list of walls. The interior walls always span from one exterior wall to another exterior wall and are arranged such that no more than two walls intersect at any point. You may assume that no two given walls coincide. After the listing of the interior walls there will be one final line containing the floating point coordinates of the treasure in the treasure room (guaranteed not to lie on a wall).

Output

Print a single line listing the minimum number of doors which need to be created, in the format shown below.

Sample Input

7
20 0 37 100
40 0 76 100
85 0 0 75
100 90 0 90
0 71 100 61
0 14 100 38
100 47 47 100
54.5 55.4

Sample Output

Number of doors = 2 

Source

题意:

一个正方形中有n面墙,告诉你一个宝藏所在的坐标。问最少要砸穿多少墙才能到达宝藏。

思路:

枚举宝藏坐标和所有的墙的端点构成一个线段。判断这个线段和多少墙相交,因为这个就是从某一个点进入的最短距离,相交的个数就是穿墙数。

这个端点就是最开始进入的点。

相当于那些墙的端点把外围墙划分成了很多区域,我们从某一个点进去。两个端点之间任何一个位置进去都是一样的,所以枚举端点就行了。

找一个最小值就行了。要注意有可能是从角进去的。

刚开始inter函数写错了。

 #include <iostream>
#include <set>
#include <cmath>
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
//#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define inf 0x7f7f7f7f const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
} struct point{
double x, y;
point(){}
point(double _x, double _y)
{
x = _x;
y = _y;
}
point operator -(const point &b)const
{
return point(x - b.x, y - b.y);
}
point operator +(const point &b)const
{
return point(x + b.x, y + b.y);
}
point operator /(double d)const
{
return point(x / d, y / d);
}
double operator ^(const point &b)const
{
return x * b.y - y * b.x;
}
double operator *(const point &b)const
{
return x * b.x + y * b.y;
}
//绕原点旋转B
void transXY(double b)
{
double tx = x, ty = y;
x = tx * cos(b) - ty * sin(b);
y = tx * sin(b) + ty * cos(b);
}
};
struct line{
point s, e;
double k;
line(){}
line(point _s, point _e)
{
s = _s;
e = _e;
k = atan2(e.y - s.y, e.x - s.x);
}
pair<int, point>operator &(const line &b)const
{
point res = s;
if(sgn((s - e) ^ (b.s - b.e)) == ){
if(sgn((s - b.e) ^ (b.s - b.e)) == ){
return make_pair(, res);
}
else return make_pair(, res);
}
double t = ((s - b.s) ^ (b.s - b.e)) / ((s - e) ^ (b.s - b.e));
res.x += (e.x - s.x) * t;
res.y += (e.y - s.y) * t;
return make_pair(, res);
}
}; double dist(point a, point b)
{
return sqrt((a - b) * (a - b));
} bool inter(line l1,line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= &&
sgn((l1.s-l2.s)^(l2.e-l1.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= ;
} const int maxn = ;
line l[maxn];
point treasure, p[maxn];
int n; int main()
{
l[] = line(point(, ), point(, ));
l[] = line(point(,), point(, ));
l[] = line(point(, ), point(, ));
l[] = line(point(, ), point(, ));
while(scanf("%d", &n) != EOF){
for(int i = ; i <= n + ; i++){
scanf("%lf%lf%lf%lf", &l[i].s.x, &l[i].s.y, &l[i].e.x, &l[i].e.y);
//[2 * i - 1] = l[i].s;
//p[2 * i] = l[i].e;
}
scanf("%lf%lf", &treasure.x, &treasure.y); int ans = inf;
for(int i = ; i <= ; i++){
line l1 = line(treasure, l[i].s), l2 = line(treasure, l[i].e);
int cnt1 = , cnt2 = ;
for(int j = ; j <= n + ; j++){
if(inter(l1, l[j])){
cnt1++;
//cout<<cnt1<<endl;
}
if(inter(l2, l[j])){
cnt2++;
//cout<<cnt1<<endl;
}
}
ans = min(ans, cnt1 + );
ans = min(ans, cnt2 + );
}
for(int i = ; i <= n + ; i++){
line l1 = line(treasure, l[i].s), l2 = line(treasure, l[i].e);
int cnt1 = , cnt2 = ;
for(int j = ; j <= n + ; j++){
if(inter(l1, l[j])){
cnt1++;
}
if(inter(l2, l[j])){
cnt2++;
}
}
ans = min(ans, cnt1);
ans = min(ans, cnt2);
}
/*for(int i = 1; i <= n * 2; i++){
line l1 = line(treasure, p[i]);
int cnt = 0;
for(int j = 1; j <= n; j++){
if(inter(l1, l[j])){
cnt++;
}
}
ans = min(ans, cnt);
//cout<<ans<<endl;
}
line l1 = line(treasure, point(0, 0));
int cnt = 0;
for(int i = 1; i <= n; i++){
if(inter(l1, l[i])){
cnt++;
}
}
ans = min(ans, cnt + 1);
cnt = 0;
l1 = line(treasure, point(0, 100));
for(int i = 1; i <= n; i++){
if(inter(l1, l[i])){
cnt++;
}
}
ans = min(ans, cnt + 1);
cnt = 0;
l1 = line(treasure, point(100, 0));
for(int i = 1; i <= n; i++){
if(inter(l1, l[i])){
cnt++;
}
}
ans = min(ans, cnt + 1);
cnt = 0;
l1 = line(treasure, point(100, 100));
for(int i = 1; i <= n; i++){
if(inter(l1, l[i])){
cnt++;
}
}
ans = min(ans, cnt + 1);*/
printf("Number of doors = %d\n", ans);
}
return ;
}

poj1066 Treasure Hunt【计算几何】的更多相关文章

  1. POJ1066 Treasure Hunt

    嘟嘟嘟 题意看题中的图就行:问你从给定的点出发最少需要穿过几条线段才能从正方形中出去(边界也算). 因为\(n\)很小,可以考虑比较暴力的做法.枚举在边界中的哪一个点离开的.也就是枚举四周的点\((x ...

  2. zoj Treasure Hunt IV

    Treasure Hunt IV Time Limit: 2 Seconds      Memory Limit: 65536 KB Alice is exploring the wonderland ...

  3. POJ 1066 Treasure Hunt(线段相交判断)

    Treasure Hunt Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4797   Accepted: 1998 Des ...

  4. ZOJ3629 Treasure Hunt IV(找到规律,按公式)

    Treasure Hunt IV Time Limit: 2 Seconds      Memory Limit: 65536 KB Alice is exploring the wonderland ...

  5. POJ 1066 Treasure Hunt(相交线段&amp;&amp;更改)

    Treasure Hunt 大意:在一个矩形区域内.有n条线段,线段的端点是在矩形边上的,有一个特殊点,问从这个点到矩形边的最少经过的线段条数最少的书目,穿越仅仅能在中点穿越. 思路:须要巧妙的转换一 ...

  6. Treasure Hunt

    Treasure Hunt time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  7. zoj 3629 Treasure Hunt IV 打表找规律

    H - Treasure Hunt IV Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu ...

  8. ZOJ 3626 Treasure Hunt I 树上DP

    E - Treasure Hunt I Time Limit:2000MS Memory Limit:65536KB Description Akiba is a dangerous country ...

  9. 湖南大学ACM程序设计新生杯大赛(同步赛)I - Piglet treasure hunt Series 1

    题目描述 Once there was a pig, which was very fond of treasure hunting. The treasure hunt is risky, and ...

随机推荐

  1. python2内置属性

    # encoding: utf-8 # module __builtin__ # from (built-in) # by generator 1.145 from __future__ import ...

  2. Unity3D的按钮添加事件有三种方式

    为Unity3D的按钮添加事件有三种方式,假设我们场景中有一个Canvas对象,Canvas对象中有一个Button对象. 方式一: 创建脚本ClickObject.cs,然后将脚本添加到Canvas ...

  3. Struts2_day03讲义_使用Struts2完成对客户查询的优化操作

  4. 第四章 TCP粘包/拆包问题的解决之道---4.2--- 未考虑TCP粘包导致功能异常案例

    4.2 未考虑TCP粘包导致功能异常案例 如果代码没有考虑粘包/拆包问题,往往会出现解码错位或者错误,导致程序不能正常工作. 4.2.1 TimeServer 的改造 Class : TimeServ ...

  5. 1. Oracle安装部署文档

    一. 部署环境步骤 1.1 软件环境 操作系统:CentOS release 6.5oracle安装包:linux.x64_11gR2_database_1of1.zip:linux.x64_11gR ...

  6. 使用Html和ashx文件实现其简单的注册页面

    记得上一次博客中实现的是其登录页面,其实学会了登录页面,注册页面自然就知道怎么写啦,都是一个意思的,但是今天不知道怎么个情况,写一个注册页面程序 中 一直在出错,大的问题小的问题一直出错,似乎是不在状 ...

  7. 手写自己的ThreadLocal(线程局部变量)

    ThreadLocal对象通常用于防止对可变的单实例变量或全局变量进行共享. 精简版: public class MyThreadLocal<T> { private Map<Thr ...

  8. iOS - 扩展UIButton的响应区域

    扩展UIButton的响应区域 引言 通常在iOS开发中通常会遇到产品说按钮的响应区域不大 而UI给我们的设计是按钮的面积 而不是按钮的响应面积 所以在这种情况下需要我们自己去扩展按钮的响应区域 思考 ...

  9. Android学习之RadioGroup和RadioButton

    转载自:http://my.oschina.net/amigos/blog/59261 实现RadioButton由两部分组成,也就是RadioButton和RadioGroup配合使用.RadioG ...

  10. JS - 查找同辈中的对象

    今天在使用parent().find(".a:first")的时候,发现查找结果非正常按照顺序来的.有点递归的感觉,从底层往上. 因为需要的是同级的对象,所以去查了一下jquery ...