显然构造出生成函数:则有f(x)=(1+x2+x4+……)·(1+x)·(1+x+x2)·(x+x3+x5+……)·(1+x4+x8+……)·(1+x+x2+x3)·(1+x)·(1+x3+x6+……)。

  化为有限,则有f(x)=x(1+x)2·(1+x+x2)·(1+x+x2+x3)/(1-x2)2·(1-x3)·(1-x4)=x·(1+x+x2)·(1+x)/(1-x)2·(1-x3)·(1-x2)=x·(1+x)/(1-x)3·(1-x2)=x/(1-x)4

  广义二项式定理暴算。则有f(x)=x·(C(-4,0)·(-x)0+C(-4,1)·(-x)1+……)。考虑C(-4,n)=(-4)·(-5)·……·(-4-n+1)/n!=(-1)n·(n+3)!/3!/n!=(-1)n·C(n+3,3)。则f(x)=C(3,3)·x+C(4,3)·x2+……。

  即答案为C(n+2,3)=n(n-1)(n-2)/6。求一下6在模10007下的逆元就好。观察到6整除10008甚至可以直接算逆元。

  (怎么我一交darkbzoj就上不去了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define p 10007
int read()
{
int x=;char c=getchar();
while (c>=''&&c<='') x=((x<<)+(x<<)+(c^))%p,c=getchar();
return x;
}
int n;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3028.in","r",stdin);
freopen("bzoj3028.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read()+;
cout<<n*(n+p-)%p*(n+p-)%p*%p;
return ;
}

BZOJ3028 食物(生成函数)的更多相关文章

  1. BZOJ3028食物——生成函数+泰勒展开

    题目描述 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这次又准备带一些 ...

  2. BZOJ3028: 食物(生成函数)

    题意 链接 Sol 生成函数入门题. 对每个物品分别列一下,化到最后是\(\frac{x}{(1-x)^4}\) 根据广义二项式定理,最后答案是\(C_{(N - 1) + 4 - 1}^{4-1} ...

  3. BZOJ3028 食物 (生成函数)

    首先 1+x+x^2+x^3+...+x^∞=1/(1-x) 对于题目中的几种食物写出生成函数 (对于a*x^b , a表示方案数 x表示食物,b表示该种食物的个数) f(1)=1+x^2+x^4+. ...

  4. 2018.12.30 bzoj3028: 食物(生成函数)

    传送门 生成函数模板题. 我们直接把每种食物的生成函数列出来: 承德汉堡:1+x2+x4+...=11−x21+x^2+x^4+...=\frac 1{1-x^2}1+x2+x4+...=1−x21​ ...

  5. 【bzoj3028】 食物 生成函数+隔板法

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 这题的推导很妙啊,裸的推母函数的题. 我们首先构造出每种食物的母函数: 汉堡:$ ...

  6. bzoj3028食物

    http://www.lydsy.com/JudgeOnline/problem.php?id=3028 好吧,这是我第一道生成函数的题目. 先搞出各种食物的生成函数: 汉堡:$1+x^2+x^4+. ...

  7. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  8. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  9. BZOJ3028 食物 和 LOJ6261 一个人的高三楼

    总结一下广义二项式定理. 食物 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数 ...

随机推荐

  1. ASP.NET Core 使用外部登陆提供程序登陆的流程,以及身份认证的流程 (转载)

    阅读目录 在Asp.Net Core 中使用外部登陆(google.微博...) 中间件管道 The Authentication Middleware The Challenge 与认证中间件进行交 ...

  2. windows平台快速搭建Linux(CentOS)

    VMware简介 VMware Workstation(简称 “虚拟机”)是一款功能强大的桌面虚拟计算机软件,用户可在Windows平台通过VMware软件同时运行不同的操作系统.这对IT开发人员而言 ...

  3. Ionic 动态配置url路由的设置

    随着Ionic App功能的不断增加,需要路由的url设置就越来越多,不喜欢在config函数中写一堆硬代码,一则不美,二则维护起来也麻烦,能不能把这些数据独立出来呢? 经过查找资料与各种实验,最终找 ...

  4. 如何用区块链技术解决信任问题?Fabric 架构深度解读

    阿里妹导读:区块链技术,随着比特币的兴起而为大家所知.但是具体到技术本身,大家相对熟悉的几个词可能是“数据不可篡改”.“公开链”.“分布式数据”.“共识机制”等. 这篇文章将抛砖引玉,通过深度解读Hy ...

  5. C# 根据部分属性来判断俩个对象是否相同

    根据部分属性来判断俩个对象是否相同 代码是第一版本 可能不牢固 有问题请反馈一下 3QU 效果图: public static class CustomExpand { public static b ...

  6. Spring+SpringMVC+MyBatis+easyUI整合进阶篇(六)一定要RESTful吗?

    作者:13 GitHub:https://github.com/ZHENFENG13 版权声明:本文为原创文章,未经允许不得转载. 写在前面的话 这个问题看起来就显得有些萌,或者说类似的问题都有些不靠 ...

  7. testNG-失败用例重跑方法探究

    实现IRetryAnalyzer类,重写其中的retry方法public class TestNGRetry implements IRetryAnalyzer { private int retry ...

  8. GNU构建系统和AutoTools

    注:本篇博客是阅读文末[参考博客]的讲解所写,内容非原创,仅是学习笔记 1. 概述2. 不同视角的程序构建2.1 用户视角2.2 开发者视角3. 导图图片4. configure选项参考博客 1. 概 ...

  9. 2016-03-22 OneZero团队 Daily Scrum Meeting

    会议时间: 2016-03-22 9:33-9:57am 会议内容: 一.在原有Sprint Backlog基础上,我们加了亮点(摇一摇功能:随机选取一条记录在界面显示,以提醒主页君回忆) 需求分析图 ...

  10. 冲刺Two之站立会议9

    今天我们团队主要针对软件的功能进行了改进.因为它目前可以实现视频通话,语音聊天,文件传输和文字聊天的通信功能,我们想要在它的基础上实现临时局域群聊和群聊视频的功能,目前还没有完全实现.