摘要:关于numpy and pandas的使用很多,最近也老用到,但是作为初学者总是模模糊糊,使用不清楚,所以就好好总结了一下,以备后用

第一部分:numpy

1、基础属性

  import numpy as np
  array = np.array([ [1,2,3] ,[2,3,4] ])
  print(array)
  print(array.ndim,'\t',array.shape,'\t',array.size) #维数,矩阵行列数,元素个数

  

  2、创建

  a = np.array( [   ]  ,dtype = np.int)

     a= np.zeros((2,3))     #创建两行三列的全0矩阵

  

    a = np.ones( (3,4),dtype = np.int )   #创建三行四列的全1矩阵

    

   a = np.arange(10,20,2)    #创建10-20,步长为2的矩阵

  

     a = np.arange(12).reshape( (3,4))    

    

     a = np.linspace(1,10,20).reshape( (4,5) )    #创建1-10,20个元素的等差数列矩阵

    

  3、运算

    a = np.array( [10,20,30,40] )
    b = np.arange( 4 )
    print('a = ',a,'\n','b = ', b)
    print('a+b =',a + b)
    print('b**2 =',b**2)
    print('10*np.sin(a)=',10*np.sin(a))
    print('b<3 = ',b < 3)

    

    a = np.random.random( (2,4) )
    print(a)
    print(np.sum(a))
    print(np.min(a)) #最小值
    print(np.max(a)) #最大值
    print(np.sum(a,axis = 1)) #行求和
    print(np.sum(a,axis = 0)) #列求和

    

    A = np.arange(2,14).reshape((3,4))
    print(A)
    print(np.argmin(A)) #A中最小值的index
    print(np.argmax(A)) #A中最大值的index
    print(np.mean(A)) #A的平均值
    print(np.average(A)) #A的平均值
    print(A.mean()) #A的平均值
    print(np.median(A)) #A的中位数
    print(np.cumsum(A)) #A的累加
    print(np.diff(A)) #A的累差

    

    A = np.arange(-2,10).reshape((3,4))
    print(A)
    print(np.nonzero(A)) #非0元素的行列号
    print(np.sort(A)) #A排序,从小到大
    print(np.transpose(A)) #A的转置
    print(A.T) #A的转置
    print(np.clip(A,5,9)) #A中小于5的改为5,大于9的改为9
    print(np.mean(A,axis = 0)) #A中按列求平均值
    print(np.mean(A,axis = 1)) #A中按行求平均值

    

  4、索引  

    A = np.arange(,).reshape( (,) )
    print(A)
    print(A[])
    print(A[][])
    print(A[,])

    

    A = np.arange(3,15).reshape( (3,4) )
    print(A)
    print(A[2,:]) #第二行所有数
    print(A[:,1]) #第一列所有数
    print(A[1,1:2]) #第一行,第一列到第二列的数

    

    for row in A:       #A按行遍历
     print(row)
    for column in A.T: #A转置后按行遍历
     print(column)
    for item in A.flat: 迭代A的每一项
     print(item)

    

  5、合并

    A = np.array([1,1,1],)
    B = np.array([2,2,2])
    print(np.vstack( (A,B) )) #行合并
    print(np.hstack( (A,B) )) #列合并
    print(A[np.newaxis,:])
    print(A[:,np.newaxis])
    print(np.concatenate( (A,B,B,A) ,axis = 0 ) )

    

  6、分割

    A = np.arange(12).reshape((3,4))
    print(np.split(A,2,axis = 1)) #列分2块
    print(np.split(A,3,axis = 0)) #行分3块
    #print(np.split(A,3,axis = 1)) #不能进行不均等分割

    

    print(np.array_split(A,3,axis = 1))     #进行不均等分割

    

    print(np.vsplit(A,3))       #行分
    print(np.hsplit(A,2)) #列分

    






关于numpy的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  3. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  4. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  5. 深入理解numpy

    一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...

  6. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  7. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  8. python之numpy

    一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...

  9. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  10. 给numpy矩阵添加一列

    问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...

随机推荐

  1. ORA-01536: 超出表空间 'tablespace_name' 的空间限额

    表空间限额问题知识总结:    表空间的大小与用户的配额大小是两种不同的概念    表空间的大小是指实际的用户表空间的大小,而配额大小指的是用户指定使用表空间的的大小    把表空间文件增大,还是出现 ...

  2. la 4490

    题解: 这道思路还是比较水的 我们可以等价变形成hi<=7 我们的最优决策是把抽出来的那些相同颜色的书最后插在一起(所以要统计序列中还有没有相同元素的书) f[i][j][k][x]表示前i本书 ...

  3. flink-SQL

    Table API和SQL捆绑在flink-table Maven工件中.必须将以下依赖项添加到你的项目才能使用Table API和SQL: <dependency> <groupI ...

  4. Codeforces 219E Parking Lot 线段树

    Parking Lot 线段树区间合并一下, 求当前要占的位置, 不包括两端点的写起来方便一点. #include<bits/stdc++.h> #define LL long long ...

  5. 系统环境变量(就是不需要切换目录,敲击“python”就可以进入编码器)

    1.右击我的电脑,选择属性,选择“高级系统设置” 2.选择高级,选择环境变量 3.在系统变量中找到path,点击编辑.然后新建,将python的路径复制进去,点击确定.

  6. PHP把采集抓取网页的html中的的&nbsp;去掉或者分割成数组

    日期:2017/11/6 操作系统:windows 今天抓取网页的时候出现 无法替换,经过多次测试,找到了办法;(注意是从网页上抓取到的) 分割 explode("  ",HTML ...

  7. Redis闪退解决办法

    复杂办法! cmd 进入命令,cd进入redis文件 输入:redis-server.exe redis.windows.conf,手动开启! 简单办法,删除重新下载! 不确定办法如下 1.在解压的r ...

  8. thinkphp5控制器

    // 定义应用目录 define('APP_PATH', __DIR__ . '/../app/'); // 定义配置文件目录和应用目录同级 define('CONF_PATH', __DIR__.' ...

  9. HDU 1796 How many integers can you find 【容斥】

    <题目链接> 题目大意: 给你m个数,其中可能含有0,问有多少小于n的正数能整除这个m个数中的某一个. 解题分析: 容斥水题,直接对这m个数(除0以外)及其组合的倍数在[1,n)中的个数即 ...

  10. POJ 1056 IMMEDIATE DECODABILITY 【Trie树】

    <题目链接> 题目大意:给你几段只包含0,1的序列,判断这几段序列中,是否存在至少一段序列是另一段序列的前缀. 解题分析: Trie树水题,只需要在每次插入字符串,并且在Trie树上创建节 ...