import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

莫烦tensorflow(8)-CNN的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(6)-tensorboard

    import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_f ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. JS设计模式(12)装饰者模式

    什么是装饰者模式? 定义:动态地给一个对象添加一些额外的职责.就增加功能来说,装饰器模式相比生成子类更为灵活. 主要解决:一般的,我们为了扩展一个类经常使用继承方式实现,由于继承为类引入静态特征,并且 ...

  2. Codeforces 333E Summer Earnings - bitset

    题目传送门 传送门I 传送门II 传送门III 题目大意 给定平面上的$n$个点,以三个不同点为圆心画圆,使得圆两两没有公共部分(相切不算),问最大的半径. 显然答案是三点间任意两点之间的距离的最小值 ...

  3. 【2.0】SpringBoot连接MySql 8.0的url设置

    jdbc:mysql://localhost:3306/enterprise?useUnicode=true&amp&useSSL=false&amp&characte ...

  4. P4725 【模板】多项式对数函数

    思路 考虑对ln求导后处理 根据复合函数的求导法则\(g'(f(x))=g'(x)f'(x)\) 得到 \[ \ln F(x) '= \frac{F'(x)}{F(x)} \] 最后对这个式子积分 \ ...

  5. Learning-Python【26】:反射及内置方法

    反射的概念 可以用字符串的方式去访问对象的属性,调用对象的方法(但是不能去访问方法),Python 中一切皆对象,都可以使用反射. 反射有四种方法: hasattr:hasattr(object, n ...

  6. Harbor私有仓库中如何彻底删除镜像释放存储空间?

    简介: Harbor私有仓库运行一段时间后,仓库中存有大量镜像,会占用太多的存储空间.直接通过Harbor界面删除相关镜像,并不会自动删除存储中的文件和镜像.需要停止Harbor服务,执行垃圾回收命令 ...

  7. vs2010下使用sqlite

    1.SQLite安装SQlite官网:http://www.sqlite.org/download.html 找到以下截图中内容 第一个解压之后是sqlite3.exe,第二个解压之后是sqlite3 ...

  8. HTML table导出到Excel中的解决办法

    第一部分:html+js 1.需要使用的表格数据(先不考虑动态生成的table) <table class="table tableStyles" id="tabl ...

  9. element-ui <el-input> 注册blur事件

    <template> <div class="demo"> <el-input placeholder="注册blur事件" v- ...

  10. 微信小程序城市定位(百度地图API)

    概述 微信小程序提供一些API(地址)用于获取当前用户的地理位置等信息,但无论是wx.getLocation,还是wx.chooseLocation均没有单独的字段表示国家与城市信息,仅有经纬度信息. ...