import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

莫烦tensorflow(8)-CNN的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(6)-tensorboard

    import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_f ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. django开发(二)

    1.django数据库操作---model的使用以及django自带的数据api django中已经做了ORM,表就是一个类class,表中的一个项就是一个对象object,很好用 1.1django ...

  2. jquery easyui datagrid 将值作为img显示图片时报404 undefined

    原因:datagrid 在请求到数据先进行头部数据和样式的渲染,之后数据 obj = {}  value = undefined  index = 0 进行一次渲染, 在没有formater情况将数据 ...

  3. java String 类型总结

    java中String是个对象,是引用类型?,基础类型与引用类型的区别是,基础类型只表示简单的字符或数字,引用类型可以是任何复杂的数据结构,基本类型仅表示简单的数据类型,引用类型可以表示复杂的数据类型 ...

  4. scala 入门Eclipse环境搭建

    scala 入门Eclipse环境搭建及第一个入门经典程序HelloWorld IDE选择并下载: scala for eclipse 下载: http://scala-ide.org/downloa ...

  5. 绑定方法与非绑定方法 classmethod和staticmethod

    一:绑定方法:特点:绑定给谁就应该是由谁来调用,谁来调用就会将谁当做第一个参数传入 1:绑定给对象的方法:类中定义的函数默认就是绑定给对象的 例:        2:绑定给类的方法:为类中定义的函数加 ...

  6. excel加密文件破解代码

    1. AIT+F11  2. 代码   3. F5 Public Sub AllInternalPasswords()' Breaks worksheet and workbook structure ...

  7. javascript中的词法分析

    词法分析 JavaScript中在调用函数的那一瞬间,会先进行词法分析. 词法分析的过程: 当函数调用的前一瞬间,会先形成一个激活对象:Avtive Object(AO),并会分析以下3个方面: 1: ...

  8. PHP文件PHP代码及运行(适合PHP初学者)

    本文转自:https://blog.csdn.net/cnds123/article/details/80700444 如果在warmpserver上运行php只显示源代码,可能是在用记事本保存后缀为 ...

  9. 一个简单的CD/CI流程思考,续

    经过各种优化,最终一个非常简单的pipeline出现了,图中没有包含单元测试及静态代码检查的部分,有时间补上.至少实现了提交即构建,也能迅速反馈给开发者. 但是最大的问题是,研发团队还是习惯依赖于部署 ...

  10. LOJ10155数字转换

    题目描述 如果一个数 x 的约数和 y (不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x.例如 4 可以变为 3,1 可以变为 7.限定所有数字变换在不超过 n 的正整数范围内进 ...