import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#number 1 to 10 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)

def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
return result
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)

def conv2d(x,W):
#stride[1,x_movement,y_movement,1]
#must have strides[0]=strides[3]=1
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')

def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28x28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
# print(x_image.shape)#[n_samples,28,28,1]

##conv1 layer##
W_conv1 = weight_variable([5,5,1,32])#pathc 5x5,in size 1,out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1) #output size 14x14x32

##conv2 layer##
W_conv2 = weight_variable([5,5,32,64])#pathc 5x5,in size 32,out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2) #output size 7x7x64

##func1 layer##
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
#[n_sample,7,7,64]->>[n_sample,7*7*64]
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
##func2 layer##
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()

#important step
sess.run(tf.global_variables_initializer())

for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:1})
if i%50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))

莫烦tensorflow(8)-CNN的更多相关文章

  1. 莫烦tensorflow(9)-Save&Restore

    import tensorflow as tfimport numpy as np ##save to file#rember to define the same dtype and shape w ...

  2. 莫烦tensorflow(7)-mnist

    import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 dat ...

  3. 莫烦tensorflow(6)-tensorboard

    import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_f ...

  4. 莫烦tensorflow(5)-训练二次函数模型并用matplotlib可视化

    import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt def add_layer(inputs,in_siz ...

  5. 莫烦tensorflow(4)-placeholder

    import tensorflow as tf input1 = tf.placeholder(tf.float32)input2 = tf.placeholder(tf.float32) outpu ...

  6. 莫烦tensorflow(3)-Variable

    import tensorflow as tf state = tf.Variable(0,name='counter') one = tf.constant(1) new_value = tf.ad ...

  7. 莫烦tensorflow(2)-Session

    import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tfmatrix1 = tf.constant([[3,3] ...

  8. 莫烦tensorflow(1)-训练线性函数模型

    import tensorflow as tfimport numpy as np #create datax_data = np.random.rand(100).astype(np.float32 ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. js 简单的进度条

    html部分 <div id='div1'> <div id="div2"></div> </div> css部分 div{ hei ...

  2. systemd 服务介绍

    CentOS7自定义系统服务 CentOS7的服务systemctl脚本存放在:/usr/lib/systemd/,有系统(system)和用户(user)之分,需要开机不登陆就能运行的程序,存在系统 ...

  3. JS设计模式(12)装饰者模式

    什么是装饰者模式? 定义:动态地给一个对象添加一些额外的职责.就增加功能来说,装饰器模式相比生成子类更为灵活. 主要解决:一般的,我们为了扩展一个类经常使用继承方式实现,由于继承为类引入静态特征,并且 ...

  4. github笔记

    git config --global user.name"liuhongli1"liuhongli@liuhongli:~/github/test$ git config --g ...

  5. Spring Boot Log4j2 日志学习

    简介 Java 中比较常用的日志工具类,有: Log4j. SLF4j. Commons-logging(简称jcl). Logback. Log4j2(Log4j 升级版). Jdk Logging ...

  6. MyBatis进阶(一)

    MyBatis参数传递 1. MyBatis单参数传递 单参数传递不做特殊处理,直接取出参数值赋给xml文件,如#{id} 2. MyBatis多参数传递 多参数传递默认使用{arg1, arg0, ...

  7. SAP SD-销售模式-寄售(客户寄售)

    SAP SD-销售模式-寄售(客户寄售) http://blog.sina.com.cn/s/blog_a440b7ee01014kgq.html  http://www.doc88.com/p-23 ...

  8. windows上使用foremost

    做CTF题需要这工具来提取文件里的隐藏文件, 网上大部分是linux版本,之前好不容易找了一个exe文件结果还不能用.找了很长时间终于找到了: https://github.com/raddyfiy/ ...

  9. 这可能是史上最全的css布局教程

    标题严格遵守了新广告法,你再不爽,我也没犯法呀!话不多说,直入正题. 所谓布局,其实包含两个含义:尺寸与定位.也就是说,所有与尺寸和定位相关的属性,都可以用来布局. 大体上,布局中会用到的有:尺寸相关 ...

  10. 函数式语言简介(functional language)

    1.什么是函数式语言?        是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型.这种语言具有较强的组织数据结构的能力,可以把某一数据结构(如数组)作为单一值处 ...