85D Sum of Medians
题目
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The
operator stands for taking the remainder, that is
stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
题目大意
N个操作,add x:向集合中添加x;del x:删除集合中的x;sum:将集合排序后,将集合中所有下标i % 5 = 3的元素累加求和。
分析
首先,我们不难想出最基础思路,即在线段树上记录5个值,分别表示模5余i的位置的和。但是我们知道如果插入一个数x则他后面的数的位置必然集体加一,如果删除一个数则他后面的数的位置必然减一。所以我们在每一次插入或删除之后将此点之后区间的所有线段树节点的5个值交换一下即可。在有了大体思路之后我们再来考虑如何实现交换节点这一操作:我们将所有数离线读入并离散化,在每一次操作用rd数组记录此点是后移还是前移,所以某个节点的余数为i的值即为它的的左儿子余数为i的值+它的右儿子余数为(i-左儿子之后点在原有位置上集体移动的位数)的值。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
long long xx[],kd[],d[][],rd[],b[];
map<long long,long long>id;
inline long long read(){
long long x=,f=;char s=getchar();
while(s<''||s>''){if(s=='-')f=-;s=getchar();}
while(s>=''&&s<=''){x=(x<<)+(x<<)+(s-'');s=getchar();}
return f*x;
}
inline void update(long long le,long long ri,long long pl,long long k,long long wh,long long sum){
if(le==ri){
d[][wh]+=k;
rd[wh]+=sum;
return;
}
long long mid=(le+ri)>>;
if(mid>=pl)update(le,mid,pl,k,wh<<,sum);
else update(mid+,ri,pl,k,wh<<|,sum);
rd[wh]=rd[wh<<]+rd[wh<<|];
for(long long i=;i<;i++)
d[i][wh]=d[i][wh<<]+d[(i-rd[wh<<]%+)%][wh<<|];
}
int main()
{ long long n,m,i,j,tot=,sum=;
n=read();
for(i=;i<=n;i++){
string s;
cin>>s;
if(s[]=='a'){
kd[i]=;
xx[i]=read();
b[++tot]=xx[i];
}else if(s[]=='d'){
kd[i]=;
xx[i]=read();
}else kd[i]=;
}
sort(b+,b+tot+);
for(i=;i<=tot;i++)
if(!id[b[i]]){
id[b[i]]=++sum;
}
for(i=;i<=n;i++){
if(kd[i]<){
update(,n,id[xx[i]],(kd[i]==?xx[i]:-xx[i]),,(kd[i]==?:-));
}else printf("%lld\n",d[][]);
}
return ;
}
85D Sum of Medians的更多相关文章
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- Codeforces 85D Sum of Medians
传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- 数据结构(线段树):CodeForces 85D Sum of Medians
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- CodeForces 85D Sum of Medians Splay | 线段树
Sum of Medians 题解: 对于这个题目,先想到是建立5棵Splay,然后每次更新把后面一段区间的树切下来,然后再转圈圈把切下来的树和别的树合并. 但是感觉写起来太麻烦就放弃了. 建立5棵线 ...
- CF 85D Sum of Medians (五颗线段树)
http://codeforces.com/problemset/problem/85/D 题意: 给你N(0<N<1e5)次操作,每次操作有3种方式, 1.向集合里加一个数a(0< ...
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- Coderforces 85 D. Sum of Medians(线段树单点修改)
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
随机推荐
- 2018-2019-2 20165210《网络对抗技术》Exp6 信息搜集与漏洞扫描
2018-2019-2 20165210<网络对抗技术>Exp6 信息搜集与漏洞扫描 一.实验目标: 掌握信息搜集的最基础技能与常用工具的使用方法. 二.实验内容: 各种搜索技巧的应用 G ...
- 如何安装Microsoft Visual C++6.0
Microsoft Visual C++6.0作为新手C语言编程软件,被大家广为使用,然而许多人为拷贝来的C++6.0安装包如何安装感到苦恼,因此许多同学都是以安装失败,安装不成 功而告终.接下来我就 ...
- Redis底层探秘(二):链表和跳跃表
链表简介 链表提供了高效的节点重排能力,以及顺序性的节点访问方式,并且可以通过增删节点来灵活地跳转链表的长度. 作为一种常用数据结构,链表内置在很多高级的编程语言里面,因为Redis使用C语言并没有内 ...
- TP中讲的两种ajax方法
一. 控制器中public function add(){ $this->display(); } public function ajaxSave(){ if(IS_AJAX){ echo ' ...
- SVM模型进行分类预测时的参数调整技巧
一:如何判断调参范围是否合理 正常来说,当我们参数在合理范围时,模型在训练集和测试集的准确率都比较高:当模型在训练集上准确率比较高,而测试集上的准确率比较低时,模型处于过拟合状态:当模型训练集和测试集 ...
- k2 4.6.9安装记录-够复杂了
首先需要准备一台Windows server 2008R2 系统.可以从微软官方下载. 下载地址: http://www.microsoft.com/zh-cn/download/confirmati ...
- 常用Kerberos指令
1. 以超管身份进入kadminkadmin.local addprinc -randkey root/master1@JENKIN.COM //生成随机key的principal addprin ...
- 关于postman、postman interceptor的安装、配置问题
由于app中有一些鉴权问题,需要携带浏览器的cookie. 不然的话不能够正确测试接口,就在chrome(这里下载的来源是Google商店)中添加了postman interceptor插件. 然后发 ...
- [转] LINUX 三种网络连接模式
Linux下NAT模式和桥接模式的网络配置 最近在配置linux虚拟机的时候发现有很多坑,现在记录下来以防日后又跳到坑里. 我的运行环境是:主机 windows 7 虚拟机 Virtualbox ...
- Java 的三个注释
单行注释 // 这是名为 a 的类 class a{ } 多行注释 /* 这是多行注释 可以注释多行 */ class a{ } 文档注释 /** 这是文档注释 可以注释多行 */ class a{ ...