51nod 1350 斐波那契表示(递推+找规律)
传送门
题意
分析
我们发现该数列遵循下列规律:
1
1,2
1,2,2
1,2,2,2,3
1,2,2,2,3,2,3,3
我们令A[i]表示f[i]开始长为f[i-1]的i的最短表示和
那么得到A[i]=A[i-1]+A[i-2]+f[i-2]
那么先预处理出每一段和A[i],i不会超过84
先连续加A[i],对于剩余一段,递归处理,具体见代码
感谢qwb
代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
int t;
ll n;
ll f[101],A[101];
void init()
{
A[2]=A[1]=1;
f[1]=f[2]=1;
F(i,3,84)
{
f[i]=f[i-1]+f[i-2];
A[i]=A[i-1]+A[i-2]+f[i-2];
}
}
ll solve(int id,ll num)
{
if(f[id]==num) return A[id];
if(f[id-1]>=num) return solve(id-1,num);
return A[id-1]+num-f[id-1]+solve(id-2,num-f[id-1]);
}
int main()
{
init();
for(scanf("%d",&t);t--;)
{
scanf("%lld",&n);
ll sum=0,ans=0;
int id=0;
while(sum+f[id+1]<n) sum+=f[++id];
F(i,1,id) ans+=A[i];
ans+=solve(id+1,n-sum);
printf("%lld\n",ans);
}
return 0;
}
51nod 1350 斐波那契表示(递推+找规律)的更多相关文章
- 计蒜客 28319.Interesting Integers-类似斐波那契数列-递推思维题 (Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 I)
I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个 ...
- POJ3070 斐波那契数列递推 矩阵快速幂模板题
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- 51nod 1242 斐波那契数列的第N项
之前一直没敢做矩阵一类的题目 其实还好吧 推荐看一下 : http://www.cnblogs.com/SYCstudio/p/7211050.html 但是后面的斐波那契 推导不是很懂 前面讲的挺 ...
- 51 nod 1350 斐波那契表示
每一个正整数都可以表示为若干个斐波那契数的和,一个整数可能存在多种不同的表示方法,例如:14 = 13 + 1 = 8 + 5 + 1,其中13 + 1是最短的表示(只用了2个斐波那契数).定义F(n ...
- 51Nod - 1242 斐波那契(快速幂)
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 51nod 1031+斐波那契和杨辉三角的一些基础知识
直接斐波那契... #include<stdio.h> #include<queue> #include<string.h> #include<iostrea ...
- (矩阵快速幂)51NOD 1242斐波那契数列的第N项
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
随机推荐
- 什么是SPU、SKU、SKC、ARPU
首先,搞清楚商品与单品的区别.例如,iphone是一个单品,但是在淘宝上当很多商家同时出售这个产品的时候,iphone就是一个商品了. 商品:淘宝叫item,京东叫product,商品特指与商家有关的 ...
- C# Remoting 简单实现
此处下载源代码(VS2010编译通过) http://files.cnblogs.com/files/qqhfeng/%E8%BF%9C%E7%A8%8B%E8%B0%83%E7%94%A8%E6 ...
- MySQL中varchar类型排序
-- +0后就转换INT类型排序 SELECT * FROM T_TEST ORDER BY (SORT + 0) DESC ;
- python之数据库的操作(课前准备)
数据库(Database)是按照数据结构来组织.存储和管理数据的仓库. 上面的就是数据库的定义. 何为数据库,简单的来说,就是我们的大型数据的存放地点. 而我们学习的呢就是数据库的访问层的制作. 何为 ...
- 下载Django
Django下载教程以及学习教程https://code.ziqiangxuetang.com/django/django-queryset-api.html 或者直接搜索自强学堂
- Android指针管理:RefBase,SP,WP
Android中通过引用计数来实现智能指针,并且实现有强指针与弱指针.由对象本身来提供引用计数器,但是对象不会去维护引用计数器的值,而是由智能指针来管理. 要达到所有对象都可用引用计数器实现智能指针管 ...
- windows系统中启动应用需要的端口被别的程序占用
开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID 之后在任务管理器中找到这个PID所对应的程序如果任务管理器中没有PID这一项,可以在任务管理器中选&qu ...
- JAVA基础知识总结10(包类)
包:定义包用package关键字. 1:对类文件进行分类管理. 2:给类文件提供多层名称空间. 如果生成的包不在当前目录下,需要最好执行classpath,将包所在父目录定义到classpath变量中 ...
- Android按钮单击事件的四种常用写法
这篇文章主要介绍了Android按钮单击事件的四种常用写法总结,比较了常见的四种写法的优劣,有不错的参考借鉴价值,需要的朋友可以参考下 很多学习Android程序设计的人都会发现每个人对代码的写法都有 ...
- 请用fontAwesome代替网页icon小图标(转)
1. 引言 网页小图标到处可见,如果一个网页都是干巴巴的文字和图片,而没有小图标,会显得非常简陋.下面的小图标,你是不是会经常用到? 你可能说——“我们用的都是彩色的,不是黑白的”——别着急,下面会讲 ...