$G[k][x]$表示所有$x$个点的无向图中每一个图的边数的$k$次方之和。

$F[k][x]$就是在$G[k][x]$的基础上加了一个整体连通的性质。

有一个经典的套路就是对于$F$在对应的$G$中刨去枚举$1$号节点所在的连通块大小的答案。

最后一个难点就是对于形如$\sum(x+y)^2$可以转化为$\sum x^2 +2(\sum x)(\sum y)+\sum y^2$。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define M 2002
using namespace std;
int read(){
int nm=0,fh=1; char cw=getchar();
for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
return nm*fh;
}
int G[3][M],F[3][M],C[M][M],num;
const int n=read(),mod=read();
int mul(int x,int y){return (LL)x*(LL)y%mod;}
int add(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void upd(int &x,int y){x=add(x,y);}
int qpow(int x,int sq){
if(sq<0) return 0;
int res=1; x%=mod;
while(sq){
if(sq&1) res=mul(res,x);
x=mul(x,x),sq>>=1;
}
return res;
}
int main(){
C[0][0]=1;
for(int i=1;i<=n;i++){
num=(i*(i-1)>>1),C[i][0]=C[i][i]=1,G[0][i]=qpow(2,num),G[1][i]=mul(num,qpow(2,num-1));
for(int j=0;j<i;j++)upd(G[2][i],mul(add(add(G[2][i-1],mul(j<<1,G[1][i-1])),mul(j*j,G[0][i-1])),C[i-1][j]));
for(int j=1;j<i;j++){
C[i][j]=add(C[i-1][j],C[i-1][j-1]),upd(F[0][i],mul(C[i-1][j-1],mul(F[0][j],G[0][i-j])));
upd(F[1][i],mul(C[i-1][j-1],add(mul(F[1][j],G[0][i-j]),mul(F[0][j],G[1][i-j]))));
upd(F[2][i],mul(C[i-1][j-1],add(add(mul(F[2][j],G[0][i-j]),mul(2,mul(F[1][j],G[1][i-j]))),mul(F[0][j],G[2][i-j]))));
}
for(int j=0;j<3;j++) F[j][i]=mod-F[j][i],upd(F[j][i],G[j][i]);
}
printf("%d\n",F[2][n]); return 0;
}

幻想乡三连B:连在一起的幻想乡的更多相关文章

  1. 幻想乡三连C:狂飙突进的幻想乡

    题解: 不难发现,对于每一条从$S$到$T$的路径,设其$x.y$的和为$S_x.S_y$,其对答案的贡献是$a\cdot S_x+(1-a)\cdot S_y$,这是一个关于$a$的一次函数.而所有 ...

  2. 幻想乡三连A:五颜六色的幻想乡

    非常直接地构造 由于答案与生成树计数有关,所以一定要使用矩阵树定理,但这样就不能限制每种颜色的便使用的数量 我们构造$N^2$个关于$Ans_{x,y}$的方程,枚举将红色的边拆成$x$条,将蓝色的边 ...

  3. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  4. CD 从抓轨到搭建流媒体服务器 —— 以《月临寐乡》为例

    2022-07-19 v0.0.1 由于某些原因,进了 Static World 的群并入坑了 月临寐乡 ,梦开始了.作为幻想乡的新人,也算是有了自己喜欢的社团.但是更细节的东西,狐狐脑子一下子塞不下 ...

  5. SAC E#1 - 一道难题 Tree

    题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是她给前来救她的魏潇承留了一个线索. 她设置了一棵树( ...

  6. SAC E#1 - 一道难题 Tree(树形DP)

    题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是她给前来救她的魏潇承留了一个线索. 她设置了一棵树( ...

  7. 洛谷 P3931 SAC E#1 - 一道难题 Tree

    题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是她给前来救她的魏潇承留了一个线索. 她设置了一棵树( ...

  8. [专题总结]矩阵树定理Matrix_Tree及题目&题解

    专题做完了还是要说两句留下什么东西的. 矩阵树定理通俗点讲就是: 建立矩阵A[i][j]=edge(i,j),(i!=j).即矩阵这一项的系数是两点间直接相连的边数. 而A[i][i]=deg(i). ...

  9. 「洛谷P3931」 SAC E#1 - 一道难题 Tree

    P3931 SAC E#1 - 一道难题 Tree 题目背景 冴月麟和魏潇承是好朋友. 题目描述 冴月麟为了守护幻想乡,而制造了幻想乡的倒影,将真实的幻想乡封印了.任何人都无法进入真实的幻想乡了,但是 ...

随机推荐

  1. json格式转数组注意事项

    今天遇到一个特别奇葩的问题,json格式明明是正确的,转数组时却就是出不来,后来才发现是文件的编码问题,文件的编码一定要是utf-8无BOM格式,这点一定要切记!切记! 如果想确认json是否正确:h ...

  2. spring+struts1

    概括及介绍: 集成原理:在Action 中获得BeanFactory,通过BeanFactory取得业务逻辑对象 本例采用:JDK1.8,tomcat7.0.9  技术点:spring与strut1集 ...

  3. fzu2020( c(n,m)%p,其中n, m, p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数) )

    基本的模板题,统计分子分母中p出现的次数,然后求逆元取模. // // main.cpp // fzu2020 // // Created by 陈加寿 on 15/12/27. // Copyrig ...

  4. poj1845(二分快速求等比数列模M和)

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 17039   Accepted: 4280 Descripti ...

  5. 九度OJ 1181:遍历链表 (链表、排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2733 解决:1181 题目描述: 建立一个升序链表并遍历输出. 输入: 输入的每个案例中第一行包括1个整数:n(1<=n<=1 ...

  6. What I learned from competing against a ConvNet on ImageNet

    http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

  7. 开发者眼中的Spring与JavaEE

    JavaEE与Spring 在Java社区中,Spring与Java EE之争是个永恒的话题.在这场争论中,来自两个阵营的布道师.架构师 与铁杆粉丝都在不遗余力地捍卫着本方的尊严,并试图说服对方加入到 ...

  8. springboot错误页面处理

    springboot作为微服务的便捷框架,在错误页面处理上也有了一些新的处理,不同于之前的pringmvc500的页面处理是比较简单的,用java config或者xml的形式,定义如下的Bean即可 ...

  9. restful规范和restframework框架

    什么是接口? 接口可以理解为url就是接口. 那么在其他语言里面接口也可以是约束类 restful规范是什么? RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便 ...

  10. android 获取短信验证码倒计时

    android 获取短信验证码倒计时 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbWVuZ2xlbGUxMzE0/font/5a6L5L2T/fonts ...