[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem
Let's say we have two strings:
str1 = 'ACDEB'
str2 = 'AEBC'
We need to find the longest common subsequence, which in this case should be 'AEB'.
Using dynamic programming, we want to compare by char not by whole words.
- we need memo to keep tracking the result which have already been calculated
- memo is 2d array, in this case is 5 * 4 array.
- It devided problem into two parts
- If the char at the given indexs for both strings are the same, for example, 'A' for str1 & str2, then we consider
'A' + LSC(str1, str2, i1 + 1, i2 + 1)
- If the char at the given indexs are not the same, we pick max length between LCB('DEB', 'EBC') & LCB('CDEB', 'BC'), we pick
Max {
LCS('DEB', 'EBC'),
LCS('CDEB', 'BC')
}
Bacislly for the str1 = 'CDEB' str2 = 'EBC', the first char is not the same, one is 'C', another is 'E', then we devide into tow cases and get the longer one. The way to devide is cutting 'C' from str1 get LCS('DEB', 'EBC'), and cutting 'E' from str2 get LCS('CDEB', 'BC').
/**
* FIND THE LONGEST COMMON SEQUENCES BY USING DYNAMICE PROGRAMMING
*
* @params:
* str1: string
* str2: string
* i1: number
* i2: number
* memo: array []
*
* TC: O(L*M) << O(2^(L*M))
*/ function LCS(str1, str2) {
const memo = [...Array(str1.length)].map(e => Array(str2.length)); /**
* @return longest common sequence string
*/
function helper(str1, str2, i1, i2, memo) {
console.log(`str1, str2, ${i1}, ${i2}`);
// if the input string is empty
if (str1.length === i1 || str2.length === i2) {
return "";
}
// check the memo, whether it contians the value
if (memo[i1][i2] !== undefined) {
return memo[i1][i2];
}
// if the first latter is the same
// "A" + LCS(CDEB, EBC)
if (str1[i1] === str2[i2]) {
memo[i1][i2] = str1[i1] + helper(str1, str2, i1 + 1, i2 + 1, memo);
return memo[i1][i2];
} // Max { "C" + LCS(DEB, EBC), "E" + LCB(CDEB, BC) }
let result;
const resultA = helper(str1, str2, i1 + 1, i2, memo); // L
const resultB = helper(str1, str2, i1, i2 + 1, memo); // M if (resultA.length > resultB.length) {
result = resultA;
} else {
result = resultB;
} memo[i1][i2] = result;
return result;
} return {
result: helper(str1, str2, 0, 0, memo),
memo
};
} //const str1 = "I am current working in Finland @Nordea",
//str2 = "I am currently working in Finland at Nordea"; const str1 = "ACDEB",
str2 = "GAEBC"; const { result, memo } = LCS(str1, str2);
console.log(
`
${str1}
${str2}
's longest common sequence is
"${result === "" ? "Empty!!!" : result}"
`
); console.log(memo);
----
Bottom up solution can be:
1. Init first row and first col value to zero
2. Then loop thought the data, If row latter and col latter is not the same, then take which is larger Max {the previous row same col value data[row-1][col], same row but previous col data[row][col-1]}
3. If they are the same, take data[row-1][col-1] + 1.
[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem的更多相关文章
- Dynamic Programming | Set 4 (Longest Common Subsequence)
首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...
- Dynamic Programming | Set 3 (Longest Increasing Subsequence)
在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Opti ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- [Algorithms] Longest Common Subsequence
The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...
- 1143. Longest Common Subsequence
link to problem Description: Given two strings text1 and text2, return the length of their longest c ...
- 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题
Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...
- 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm
''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...
- 【牛客网】Longest Common Subsequence
[牛客网]Longest Common Subsequence 发现只有d数组最格路 于是我们把前三个数组中相同的数记成一个三维坐标,同一个数坐标不会超过8个 从前往后枚举d,每次最多只会更新不超过8 ...
- LintCode Longest Common Subsequence
原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...
随机推荐
- CSS 清除浮动的4种方法
此为未清除浮动源代码,运行代码无法查看到父级元素浅黄色背景.<style type=”text/css”> <!– *{margin:0;padding:0;} body{font: ...
- 前端模块加载规范AMD与CMD小记
AMD代表:requirejs: CMD代表:seajs: AMD CMD 代表 requirejs seajs 执行 提前加载,不管是否调用模块,先解析所以模块 提前加载,在真正需要使 ...
- Java并发容器--ConcurrentHashMap
引子 1.不安全:大家都知道HashMap不是线程安全的,在多线程环境下,对HashMap进行put操作会导致死循环.是因为多线程会导致Entry链表形成环形数据结构,这样Entry的next节点将永 ...
- OpenCV 2.4.9 学习笔记(1)—— 基本功能结构
一些关于OpenCV(2.4.9版本)的学习笔记,作为记录,以免自己忘了. 安装与配置 OpenCV的下载.安装以及在各个平台(Windows/Linux等)配置网上有很多的资料,自己就不用存了.需要 ...
- ajax+json模态框中分页(spring+struts+mybatis+easyui分页插件)
0.业务需求: 点击每个数字的时候可以显示每个对应的详细记录.也就是得点击11的时候拿着开采部与C级去查询.
- 转载~基于比较的排序算法的最优下界为什么是O(nlogn)
基于比较的排序算法的最优下界为什么是O(nlogn) 发表于2013/12/21 16:15:50 1024人阅读 分类: Algorithm 1.决策二叉树 回答这个问题之前我们先来玩一个猜数字的 ...
- Xcode5 上64位编译 出错No architectures to compile for
http://blog.csdn.net/chocolateloveme/article/details/16900999 详细错误信息如下: No architectures to compile ...
- 【leetcode】500. Keyboard Row
问题描述: Given a List of words, return the words that can be typed using letters of alphabet on only on ...
- c/c++相关面试准备笔记1
在c++程序中调用被C编译器编译后的函数,为什么要加extern “C”? C++语言支持函数重载,C语言不支持函数重载.函数被C++编译后在库中的名字与C语言的不同.C++提供了C连接交换指定符号 ...
- ObjectInputStream&ObjectOutputStream工具类
序列化:将数据保存到文件:ObjectOutputStream; 反序列化:将文件中的数据显示出来:ObjectInputStream; 在反序列化程序中运行后能够正常输出Person的相关信息, ...