Let's say we have two strings:

str1 = 'ACDEB'

str2 = 'AEBC'

We need to find the longest common subsequence, which in this case should be 'AEB'.

Using dynamic programming, we want to compare by char not by whole words.

  • we need memo to keep tracking the result which have already been calculated

    •   memo is 2d array, in this case is 5 * 4 array.
  • It devided problem into two parts
    •   If the char at the given indexs for both strings are the same, for example, 'A' for str1 & str2, then we consider
'A' + LSC(str1, str2, i1 + 1, i2 + 1)
    • If the char at the given indexs are not the same, we pick max length between LCB('DEB', 'EBC') & LCB('CDEB', 'BC'),  we pick
Max {
LCS('DEB', 'EBC'),
LCS('CDEB', 'BC')
}

Bacislly for the str1 = 'CDEB' str2 = 'EBC', the first char is not the same, one is 'C', another is 'E', then we devide into tow cases and get the longer one. The way to devide is cutting 'C' from str1 get LCS('DEB', 'EBC'), and cutting 'E' from str2 get LCS('CDEB', 'BC').

 /**
* FIND THE LONGEST COMMON SEQUENCES BY USING DYNAMICE PROGRAMMING
*
* @params:
* str1: string
* str2: string
* i1: number
* i2: number
* memo: array []
*
* TC: O(L*M) << O(2^(L*M))
*/ function LCS(str1, str2) {
const memo = [...Array(str1.length)].map(e => Array(str2.length)); /**
* @return longest common sequence string
*/
function helper(str1, str2, i1, i2, memo) {
console.log(`str1, str2, ${i1}, ${i2}`);
// if the input string is empty
if (str1.length === i1 || str2.length === i2) {
return "";
}
// check the memo, whether it contians the value
if (memo[i1][i2] !== undefined) {
return memo[i1][i2];
}
// if the first latter is the same
// "A" + LCS(CDEB, EBC)
if (str1[i1] === str2[i2]) {
memo[i1][i2] = str1[i1] + helper(str1, str2, i1 + 1, i2 + 1, memo);
return memo[i1][i2];
} // Max { "C" + LCS(DEB, EBC), "E" + LCB(CDEB, BC) }
let result;
const resultA = helper(str1, str2, i1 + 1, i2, memo); // L
const resultB = helper(str1, str2, i1, i2 + 1, memo); // M if (resultA.length > resultB.length) {
result = resultA;
} else {
result = resultB;
} memo[i1][i2] = result;
return result;
} return {
result: helper(str1, str2, 0, 0, memo),
memo
};
} //const str1 = "I am current working in Finland @Nordea",
//str2 = "I am currently working in Finland at Nordea"; const str1 = "ACDEB",
str2 = "GAEBC"; const { result, memo } = LCS(str1, str2);
console.log(
`
${str1}
${str2}
's longest common sequence is
"${result === "" ? "Empty!!!" : result}"
`
); console.log(memo);

----

Bottom up solution can be:

1. Init first row and first col value to zero

2. Then loop thought the data, If row latter and col latter is not the same, then take which is larger Max {the previous row same col value data[row-1][col], same row but previous col data[row][col-1]}

3. If they are the same, take data[row-1][col-1] + 1.

Source, Code

[Algorithms] Using Dynamic Programming to Solve longest common subsequence problem的更多相关文章

  1. Dynamic Programming | Set 4 (Longest Common Subsequence)

    首先来看什么是最长公共子序列:给定两个序列,找到两个序列中均存在的最长公共子序列的长度.子序列需要以相关的顺序呈现,但不必连续.例如,"abc", "abg", ...

  2. Dynamic Programming | Set 3 (Longest Increasing Subsequence)

    在 Dynamic Programming | Set 1 (Overlapping Subproblems Property) 和 Dynamic Programming | Set 2 (Opti ...

  3. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  4. [Algorithms] Longest Common Subsequence

    The Longest Common Subsequence (LCS) problem is as follows: Given two sequences s and t, find the le ...

  5. 1143. Longest Common Subsequence

    link to problem Description: Given two strings text1 and text2, return the length of their longest c ...

  6. 2017-5-14 湘潭市赛 Longest Common Subsequence 想法题

    Longest Common Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Longest Common Subs ...

  7. 最长公共字串算法, 文本比较算法, longest common subsequence(LCS) algorithm

    ''' merge two configure files, basic file is aFile insert the added content of bFile compare to aFil ...

  8. 【牛客网】Longest Common Subsequence

    [牛客网]Longest Common Subsequence 发现只有d数组最格路 于是我们把前三个数组中相同的数记成一个三维坐标,同一个数坐标不会超过8个 从前往后枚举d,每次最多只会更新不超过8 ...

  9. LintCode Longest Common Subsequence

    原题链接在这里:http://www.lintcode.com/en/problem/longest-common-subsequence/ 题目: Given two strings, find t ...

随机推荐

  1. 02 Java 基础语法

    在开始 Java 基本语法之前,先说明 Java 程序的基本规范: 大小写敏感,例如 Person 和 person 是不同的 类名首字母大写,如果类名由多个单词组成,每个单词首字母都大写,例如 He ...

  2. 2018超详细sublime text3+python3.x安装配置教程(附常用插件安装教程)

    导读 本文是关于2018年7月最新版sublime text3+pythin3.x下载及安装配置教程,sublime text3版本为3176,python版本为3.7,安装环境是基于windows1 ...

  3. Java并发编程--CyclicBarrier

    概述 CyclicBarrier是一个同步工具类,它允许一组线程互相等待,直到到达某个公共屏障点.与CountDownLatch不同的是该barrier在释放等待线程后可以重用,所以称它为循环(Cyc ...

  4. xmlSerializer属性的使用

    学习了XmlAttribute,XmlElement属性的定义和使用. Order类定义 using System; using System.Collections.Generic; using S ...

  5. ubuntu安装mysql报错

    ubuntu换源后安装mysql报错: 原因:版本高,不兼容,只需要还原apt下载源,然后 sudo apt-get install mysql-server即可正常安装mysql

  6. Webpack & The Hot Module Replacement热模块替换原理解析

    Webpack & The Hot Module Replacement热模块替换原理解析 The Hot Module Replacement(HMR)俗称热模块替换.主要用来当代码产生变化 ...

  7. zlib、libzip、 libzippp 库编译(windows + cmake + vs2013)

    "libzipp" 这库是基于 "libzip" 之上封装的,而 "libzip" 又是基于 "zlib"库封装的,所以 ...

  8. 使用windos电脑模拟搭建集群(三)实现全网监控

    这里我们采用小米监控 open-falcon  这是server端就是 192.168.5.200 这台主机, agent就是负责将数据提交到 server端       agent整个集群所有主机都 ...

  9. snmp 学习

    SNMP:“简单网络管理协议”,用于网络管理的协议.SNMP用于网络设备的管理.SNMP的工作方式:管理员需要向设备获取数据,所以SNMP提供了“读”操作:管理员需要向设备执行设置操作,所以SNMP提 ...

  10. hdu 畅通工程系列题目

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 并查集水. #include <stdio.h> #include <iost ...