常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n log n)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。


  1. 算法步骤

  2. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  3. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  4. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  5. 重复步骤 3 直到某一指针达到序列尾;

  6. 将另一序列剩下的所有元素直接复制到合并序列尾。

  7. 动图演示

1、JavaScript 代码实现

function mergeSort(arr) {
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
} function merge(left, right){
var result = []; while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
} while (left.length)
result.push(left.shift()); while (right.length)
result.push(right.shift()); return result;
}

2、Python 代码实现

def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right)) def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0));
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0));
while right:
result.append(right.pop(0));
return result

3、Go 代码实现

func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
} func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
} for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
} for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
} return result
}

4、Java实现

 public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) { sort(nums, low, mid); sort(nums, mid + 1, high); merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* nums 待排序数组
* low 待排的开始位置
* mid 待排中间位置
* high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;
int j = mid + 1;
int k = 0; while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} while (i <= mid) {
temp[k++] = nums[i++];
} while (j <= high) {
temp[k++] = nums[j++];
} for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

希望可以一起交流技术,有兴趣可以加qq邀请入群:525331804 全栈技术开发qq群:581993430

JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇的更多相关文章

  1. 死磕 java同步系列之终结篇

    简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...

  2. 【机器学习算法-python实现】採样算法的简单实现

    1.背景     採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道):     一.单纯随机抽样(simple random samp ...

  3. Java面试系列第2篇-Object类中的方法

    Java的Object是所有引用类型的父类,定义的方法按照用途可以分为以下几种: (1)构造函数 (2)hashCode() 和 equals() 函数用来判断对象是否相同 (3)wait().wai ...

  4. Java面试系列第3篇-HashMap相关面试题

    HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...

  5. 死磕 java线程系列之终篇

    (手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...

  6. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  10. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. Python之路-正则表达式

    作业一:整理正则表达式博客 正则表通常被用来检索.替换那些符合某个模式(规则)的文本,为了提取对自己有用的信息,由命令解释执行:而通配符和命令是同一级别,为了提示处理效率,直接由shell解释执行. ...

  2. nginx 配置禁用ip地址访问

    做过面向公网WEB运维的苦逼们肯定见识过各种恶意扫描.拉取.注入等图谋不轨行为吧?对于直接对外的WEB服务器,我们可以直接通过 iptables . Nginx 的deny指令或者是程序来ban掉这些 ...

  3. TextField和TextView

    本文概要 1.简介 2.介绍TextField控件 3.介绍TextView控件 4.键盘的打开和关闭 5.关闭和大开键盘的通知 6.键盘的种类 详情 1.简介 与Label一样,TextField和 ...

  4. Android™ 1.5 android.R.drawable Icon Resources

    图标一览表: http://www.darshancomputing.com/android/1.5-drawables.html 官  方  API: http://developer.androi ...

  5. 云计算之路-阿里云上:数据库连接数过万的真相,从阿里云RDS到微软.NET Core

    在昨天的博文中,我们坚持认为数据库连接数过万是阿里云RDS的问题,但后来阿里云提供了当时的数据库连接情况,让我们动摇了自己的想法. 帐户 连接数 A 4077 B 3995 C 741 D 698 E ...

  6. SpringMVC基础学习(二)—开发Handler

    一.Handler开发         Handler的开发方式在springmvc中有多种,下面我们主要讲解三种实现方式:实现Controller接口.实现HttpRequestHandler接口. ...

  7. laravel安装插件laravel-ide-helper

    1.插件位置laravel-ide-helper https://github.com/barryvdh/laravel-ide-helper 2.首先改变镜像源为国内的镜像源 P { margin- ...

  8. How To Use ggplot2

    0. Preparation and Introduction ggplot2是R中新颖的数据可视化包,这得益于Leland Wilkinson在他的著作<The Grammar of Grap ...

  9. 前端开发框架简介:angular和react

    作者:vienwu react是facebook推出一个用来构建用户界面的js库.官方介绍的三大特性如下: just the ui 把react只当作一个ui组件就好,等同于传统mvc中的view. ...

  10. 为JQuery EasyUI 表单组件增加“焦点切换”功能

    1.背景说明 在使用 JQuery  EasyUI 各表单组件时,实际客户端页面元素是由 JQuery EasyUI 生成的,元素的焦点切换,虽然 Tab 键可以正常用,但顺序控制属性 tabinde ...