常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n log n)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。


  1. 算法步骤

  2. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  3. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  4. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  5. 重复步骤 3 直到某一指针达到序列尾;

  6. 将另一序列剩下的所有元素直接复制到合并序列尾。

  7. 动图演示

1、JavaScript 代码实现

function mergeSort(arr) {
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
} function merge(left, right){
var result = []; while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
} while (left.length)
result.push(left.shift()); while (right.length)
result.push(right.shift()); return result;
}

2、Python 代码实现

def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right)) def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0));
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0));
while right:
result.append(right.pop(0));
return result

3、Go 代码实现

func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
} func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
} for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
} for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
} return result
}

4、Java实现

 public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) { sort(nums, low, mid); sort(nums, mid + 1, high); merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* nums 待排序数组
* low 待排的开始位置
* mid 待排中间位置
* high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;
int j = mid + 1;
int k = 0; while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} while (i <= mid) {
temp[k++] = nums[i++];
} while (j <= high) {
temp[k++] = nums[j++];
} for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

希望可以一起交流技术,有兴趣可以加qq邀请入群:525331804 全栈技术开发qq群:581993430

JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇的更多相关文章

  1. 死磕 java同步系列之终结篇

    简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...

  2. 【机器学习算法-python实现】採样算法的简单实现

    1.背景     採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道):     一.单纯随机抽样(simple random samp ...

  3. Java面试系列第2篇-Object类中的方法

    Java的Object是所有引用类型的父类,定义的方法按照用途可以分为以下几种: (1)构造函数 (2)hashCode() 和 equals() 函数用来判断对象是否相同 (3)wait().wai ...

  4. Java面试系列第3篇-HashMap相关面试题

    HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...

  5. 死磕 java线程系列之终篇

    (手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...

  6. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  10. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 修复关于apache-xampp的问题:Port 443 in use by “vmware-hostd.exe”!

    内容提要:复关于apache-xampp的问题:Port 443 in use by “vmware-hostd.exe”!在电脑里装了VMware后,再要装xampp,十有八九就会出现这个问题: 复 ...

  2. iwebshop模拟秒杀

    //秒杀模拟练习public function sha(){ $testObj = new IModel("goodss"); $arr = $testObj->query( ...

  3. 通用数据库帮助类DBHelper(含log日志信息实时记录)

    项目需要,需要一个通用的数据库操作类,增删改查.事务.存储过程.日志记录都要有,于是在已有的帮助类上做了一些改进,并将log4j的.NET版--log4net嵌入其中记录sql的执行环境和状态. 用起 ...

  4. 任务一:零基础HTML编码练习

    任务目的 了解HTML的定义.概念.发展简史 掌握常用HTML标签的含义.用法 能够基于设计稿来合理规划HTML文档结构 理解语义化,合理地使用HTML标签来构建页面 任务描述:完成一个HTML页面代 ...

  5. webix .datatable 表格分页

    grid表格返回参数大都是 以下这种格式(参数名可能不一样) { data:[{...},{...} ...], count:39 } webix的参数格式为 { data:[{...},{...}, ...

  6. 【 Android】自定义的AlertDialog中的EditText无法调用输入法问题解决

    1.问题描述: 在自定义的AlertDialog 中添加了EditText组件,但运行时怎么点EditText都无法调出软键盘: 2.原因分析: 一开始我以为EditText的focus属性没有设置好 ...

  7. AOP学习笔记一

    软件开发的目的是为了解决各种需求,包括业务需求和系统需求.目前,业界通过使用面向对象的编程思想,已经可以对业务需求等普通关注点进行很好的抽象与封装,并且使之模块化.但是对于系统需求一类的关注点来说,情 ...

  8. netcore实践:跨平台动态加载native组件

    缘起netcore框架下实现基于zmq的应用. 在.net framework时代,我们进行zmq开发由很多的选择,比较常用的有clrzmq4和NetMQ. 其中clrzmq是基于libzmq的Int ...

  9. 泛型(CSDN转载)

    函数的参数不同叫多态,函数的参数类型可以不确定吗? 函数的返回值只能是一个吗?函数的返回值可以不确定吗? 泛型是一种特殊的类型,它把指定类型的工作推迟到客户端代码声明并实例化类或方法的时候进行. 下面 ...

  10. java线程控制方法

    一.中断线程 1.Thread.sleep()让线程进入睡眠状态,放弃CPU的占用暂停若干毫秒使用方法: public class runable implements Runnable { @Ove ...