JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n log n)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。
算法步骤
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
设定两个指针,最初位置分别为两个已经排序序列的起始位置;
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
重复步骤 3 直到某一指针达到序列尾;
将另一序列剩下的所有元素直接复制到合并序列尾。
动图演示

1、JavaScript 代码实现
function mergeSort(arr) {
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
}
function merge(left, right){
var result = [];
while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}
while (left.length)
result.push(left.shift());
while (right.length)
result.push(right.shift());
return result;
}
2、Python 代码实现
def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right)) def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0));
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0));
while right:
result.append(right.pop(0));
return result
3、Go 代码实现
func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
}
func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
}
for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
}
for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
}
return result
}
4、Java实现
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
sort(nums, low, mid);
sort(nums, mid + 1, high);
merge(nums, low, mid, high);
}
return nums;
}
/**
* 将数组中low到high位置的数进行排序
* nums 待排序数组
* low 待排的开始位置
* mid 待排中间位置
* high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;
int j = mid + 1;
int k = 0;
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
while (i <= mid) {
temp[k++] = nums[i++];
}
while (j <= high) {
temp[k++] = nums[j++];
}
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
希望可以一起交流技术,有兴趣可以加qq邀请入群:525331804 全栈技术开发qq群:581993430
JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇的更多相关文章
- 死磕 java同步系列之终结篇
简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...
- 【机器学习算法-python实现】採样算法的简单实现
1.背景 採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道): 一.单纯随机抽样(simple random samp ...
- Java面试系列第2篇-Object类中的方法
Java的Object是所有引用类型的父类,定义的方法按照用途可以分为以下几种: (1)构造函数 (2)hashCode() 和 equals() 函数用来判断对象是否相同 (3)wait().wai ...
- Java面试系列第3篇-HashMap相关面试题
HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...
- 死磕 java线程系列之终篇
(手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- VisualVM监控远程主机上的JAVA应用程序
使用VisualVM监控远程主机上JAVA应用程序时,需要开启远程主机上的远程监控访问,或者在远程JAVA应用程序启动时,开启远程监控选项,两种方法,选择其中一种就可以开启远程监控功能,配置完成后就可 ...
- 安装IPython攻略
由于对python自带的idle不太满意,看到有介绍说ipython不错,于是想装一个试试. 机器上该装的扩展包都已经装好了,比如setuptools,matplotlib,环境变量配置,所以安装起来 ...
- 如何写一手漂亮的 Vue
前几日听到一句生猛与激励并存,可怕与尴尬同在,最无奈也无解的话:"90后,你的中年危机已经杀到".这令我很受触动.显然,这有些夸张了,但就目前这日复一日的庸碌下去,眨眼的功夫,那情 ...
- 解决Appium无元素可选的如何定位
1.首先我们看看要定位的东西,我要定位的就是折让率上图自己看 写代码: AndroidElement element = driver.findElementByAndroidUIAutomato ...
- 移动端ios 输入框fixed固定在底部 焦点时乱跳加遮盖问题的解决 转自zhangyunling 加个人项目解决方案
如果您有过移动端的开发经验,那么您是否碰到过这样的问题,一个页面有输入框,当这个输入框聚焦时,输入框在IOS下,被移动到手机屏幕的当中去了,而在Android端,有些浏览器的输入框,会被键盘盖住. 1 ...
- Java--JDBC连接数据库
我们知道Java中的jdbc是用来连接应用程序和数据系统的,本篇文章主要就来看看关于JDBC的实现和使用细节.主要包含以下几点内容: JDBC的基本知识(数据驱动程序) JDBC的连接配置 ...
- 老李推荐: 第8章4节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-启动AndroidDebugBridge 4
这一部分的代码逻辑关系是这样的: 344行: 一个外部循环每次从上次保存下来的设备列表获得一个设备Device实例 350行: 再在一个内部循环从最新的设备列表中获得一个设备Device实例 353行 ...
- K近邻 Python实现 机器学习实战(Machine Learning in Action)
算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...
- 不忘初心 --- 重读<<The C Programming Language>>
这篇文章应该发布在好几年前,2011年计算机界大师Dennis Ritchie仙逝,那时对大师的映象还停留在大一刚学编程时:Unix的合作开发者,C语言的发明人.通过网上的纪念文章<<Un ...
- 高性能MySQL--索引学习笔记(原创)
看过一些人写的学习笔记,完全按书一字不漏照抄,内容很多,真不能叫笔记.遂自己整理了一份,取其精要. 更多笔记请访问@个人简书 [toc] 索引概述 索引即key 在存储引擎层实现,不同引擎工作方式不同 ...