常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为O(n log n)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第 2 种方法);
自下而上的迭代;
在《数据结构与算法 JavaScript 描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是 JavaScript 编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是 O(nlogn) 的时间复杂度。代价是需要额外的内存空间。


  1. 算法步骤

  2. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  3. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  4. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  5. 重复步骤 3 直到某一指针达到序列尾;

  6. 将另一序列剩下的所有元素直接复制到合并序列尾。

  7. 动图演示

1、JavaScript 代码实现

function mergeSort(arr) {
var len = arr.length;
if(len < 2) {
return arr;
}
var middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle);
return merge(mergeSort(left), mergeSort(right));
} function merge(left, right){
var result = []; while (left.length && right.length) {
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
} while (left.length)
result.push(left.shift()); while (right.length)
result.push(right.shift()); return result;
}

2、Python 代码实现

def mergeSort(arr):
import math
if(len(arr)<2):
return arr
middle = math.floor(len(arr)/2)
left, right = arr[0:middle], arr[middle:]
return merge(mergeSort(left), mergeSort(right)) def merge(left,right):
result = []
while left and right:
if left[0] <= right[0]:
result.append(left.pop(0));
else:
result.append(right.pop(0));
while left:
result.append(left.pop(0));
while right:
result.append(right.pop(0));
return result

3、Go 代码实现

func mergeSort(arr []int) []int {
length := len(arr)
if length < 2 {
return arr
}
middle := length / 2
left := arr[0:middle]
right := arr[middle:]
return merge(mergeSort(left), mergeSort(right))
} func merge(left []int, right []int) []int {
var result []int
for len(left) != 0 && len(right) != 0 {
if left[0] <= right[0] {
result = append(result, left[0])
left = left[1:]
} else {
result = append(result, right[0])
right = right[1:]
}
} for len(left) != 0 {
result = append(result, left[0])
left = left[1:]
} for len(right) != 0 {
result = append(result, right[0])
right = right[1:]
} return result
}

4、Java实现

 public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) { sort(nums, low, mid); sort(nums, mid + 1, high); merge(nums, low, mid, high);
}
return nums;
} /**
* 将数组中low到high位置的数进行排序
* nums 待排序数组
* low 待排的开始位置
* mid 待排中间位置
* high 待排结束位置
*/
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;
int j = mid + 1;
int k = 0; while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
} while (i <= mid) {
temp[k++] = nums[i++];
} while (j <= high) {
temp[k++] = nums[j++];
} for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}

希望可以一起交流技术,有兴趣可以加qq邀请入群:525331804 全栈技术开发qq群:581993430

JavaScript算法 ,Python算法,Go算法,java算法,系列之【归并排序】篇的更多相关文章

  1. 死磕 java同步系列之终结篇

    简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...

  2. 【机器学习算法-python实现】採样算法的简单实现

    1.背景     採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道):     一.单纯随机抽样(simple random samp ...

  3. Java面试系列第2篇-Object类中的方法

    Java的Object是所有引用类型的父类,定义的方法按照用途可以分为以下几种: (1)构造函数 (2)hashCode() 和 equals() 函数用来判断对象是否相同 (3)wait().wai ...

  4. Java面试系列第3篇-HashMap相关面试题

    HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...

  5. 死磕 java线程系列之终篇

    (手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...

  6. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  10. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 初识Javascript.03 -- switch、自增、while循环、for、break、continue、数组、遍历数组、合并数组concat

    除了注意大小写,别的木啥了 Switch语句 Switch(变量){ case 1: 如果变量和1的值相同,执行该处代码 break; case 2: 如果变量和2的值相同,执行该处代码 break; ...

  2. 利用echo命令实现倒计时的功能

    echo -e:启用反斜线控制字符的转换        -E:关闭反斜线控制字符的转换(预设如此)        -n:取消行末之换行符号(与 -e 选项下的 \c 字符同意 -e参数下的控制参数 \ ...

  3. 相机标定:kalibr标定工具箱使用总结

    1 多相机标定 1.1采集图像和IMU 1.2制作Bag包 1)组织文件结构 ~/kalibr_workspace/test/stereo_calib bagsrc cam0 (1+time(0))* ...

  4. 日历组件的使用,bootstrap-datetimepicker

    官方文档:http://www.bootcss.com/p/bootstrap-datetimepicker/ .html <input name="createdTimeEnd&qu ...

  5. Spring整合Struts2,Hibernate的xml方式

    作为一个学习中的码农,一直学习才是我们的常态,所以最近学习了SSH(Spring,Struts2,Hibernate)整合,数据库用的MySQL. 写了一个简单的例子,用的工具是IntelliJ Id ...

  6. JavaScript之作用域与闭包总结

    博主最开始接触程序是C语言,C++,后来是java,现在是php,无论哪一种语言与javascript在机制上都还是有比较大的区别. 下面总结一下用面向对象的思想写javascript需要区分的要点: ...

  7. ServerSuperIO 3.5版本的体系结构,以及未来规划的几点思考

    一.特点 1.轻型高性能通信框架,适用于多种应用场,轮询模式.自控模式.并发模式和单例模式. 2.不仅是通讯框架,是设备驱动.IO通道.控制模式场景的协调机制. 3.支持协议驱动器,可以按规范写标准协 ...

  8. OpenDigg安卓开源项目月报201704

    由OpenDigg 出品的安卓开源项目月报第一期来啦.我们的安卓开源月报集合了OpenDigg一个月来新收录的优质安卓开源项目,方便安卓开发人员便捷的找到自己需要的项目工具. DiscreteScro ...

  9. 你说你精通CSS,真的吗?

    以前做项目的时候,学习了HTML和CSS,感觉这两个比较简单,在W3school里学习了一下之后,就觉得自己已经没问题了.可是,真正要做一个好看的页面,我还是要写好久.其实,对于CSS,我并没有像我以 ...

  10. mysql性能优化配置总结

    看了一些优化mysql运维的一些书籍,在此记录总结下:进入mysql客户端输入以下sql:1.连接设置 show variables like '%max_connection%'; show sta ...