作者:桂。

时间:2017-03-21  07:25:17

链接:http://www.cnblogs.com/xingshansi/p/6592599.html

声明:欢迎被转载,不过记得注明出处哦~


前言

本文为曲线拟合与分布拟合系列的一部分,主要讲解混合拉普拉斯分布(Laplace Mixture Model,LMM)。拉普拉斯也是常用的统计概率模型之一,网上关于混合高斯模型(GMM)的例子很多,而关于LMM实现的很少。其实混合模型都可以用EM算法推导,只是求闭式解的运算上略有差别,全文包括:

  1)LMM理论推导;

  2)LMM代码实现;

内容多有借鉴他人,最后一并附上链接。

一、LMM理论推导

  A-模型介绍

对于单个拉普拉斯分布,表达式为:

$f(Y) = \frac{1}{{2b}}{e^{ - \frac{{\left| {Y - \mu } \right|}}{b}}}$

对于$K$个模型的混合分布:

$P\left( {{Y_j}|\Theta } \right) = \sum\limits_{k = 1}^K {{w_k}f\left( {{Y_j}|{\mu _k},{b_k}} \right)} $

如何拟合呢?下面利用EM分析迭代公式,仅分析Y为一维的情况,其他可类推。(先给出一个结果图)

  B-EM算法推导

E-Step:

1)求解隐变量,构造完全数据集

同GMM推导类似,利用全概率公式:

2)构造Q函数

基于之前混合高斯模型(GMM)的讨论,EM算法下混合模型的Q函数可以表示为:

$Q\left( {\Theta ,{\Theta ^{\left( i \right)}}} \right) = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{w_k}} \right)P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)} }  + \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{f_k}\left( {{Y_j}|{Z_j} \in {\Upsilon _k},{\theta _k}} \right)} \right)} } P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)$

其中${{\theta _k}} = [\mu_k,b_k]$为分布$k$对应的参数,$\Theta$  = {$\theta _1$,$\theta _2$,...,$\theta _K$}为参数集合,$N$为样本个数,$K$为混合模型个数。

M-Step:

1)MLE求参

  • 首先对${{w_k}}$进行优化

由于$\sum\limits_{k = 1}^M {{w_k}}  = 1$,利用Lagrange乘子求解:

${J_w} = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\left[ {\log \left( {{w_k}} \right)P\left( {\left. {{Z_j} \in {\Upsilon _k}} \right|{Y_j},{{\bf{\Theta }}^{\left( i \right)}}} \right)} \right]} }  + \lambda \left[ {\sum\limits_{k = 1}^K {{w_k}}  - 1} \right]$

求偏导:

$\frac{{\partial {J_w}}}{{\partial {w_k}}} = \sum\limits_{J = 1}^N {\left[ {\frac{1}{{{w_k}}}P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{{\bf{\Theta }}^{\left( i \right)}}} \right)} \right] + } \lambda  = 0$

  • 对各分布内部参数$\theta_k$进行优化

给出准则函数:

${J_\Theta } = \sum\limits_{j = 1}^N {\sum\limits_{k = 1}^K {\log \left( {{f_k}\left( {{Y_j}|{Z_j} \in {\Upsilon _k},{\theta _k}} \right)} \right)} } P\left( {{Z_j} \in {\Upsilon _k}|{Y_j},{\Theta ^{\left( i \right)}}} \right)$

仅讨论$Y_j$为一维数据情况,其他类推。对于拉普拉斯分布:

关于$\theta_k$利用MLE即可求参。

首先求解$b_k$的迭代公式:

由于$\mu_k$含有绝对值,因此需要一点小技巧。${J_\Theta }$对$\mu_k$求偏导,得到:

得到的$\mu_k$估计即为:

$\mu _k^{\left( {i + 1} \right)} = {{\hat \mu }_k}$

在迭代的最终状态,可以认为$i$次参数与$i+1$次参数近似相等,从而上面的求导结果转化为:

得到参数$\mu_k$的迭代公式:

总结一下LMM的求解步骤:

E-Step:

M-Step:

二、LMM代码实现

根据上一篇GMM的代码,简单改几行code,即可得到LMM:

function [u,b,t,iter] = fit_mix_laplace( X,M )
%
% fit_mix_laplace - fit parameters for a mixed-laplacian distribution using EM algorithm
%
% format:   [u,b,t,iter] = fit_mix_laplacian( X,M )
%
% input:    X   - input samples, Nx1 vector
%           M   - number of gaussians which are assumed to compose the distribution
%
% output:   u   - fitted mean for each laplacian
%           b - fitted standard deviation for each laplacian
%           t   - probability of each laplacian in the complete distribution
%           iter- number of iterations done by the function
%
N           = length( X );
Z           = ones(N,M) * 1/M;                  % indicators vector
P           = zeros(N,M);                       % probabilities vector for each sample and each model
t           = ones(1,M) * 1/M;                  % distribution of the gaussian models in the samples
u           = linspace(0.2,1.4,M);        % mean vector
b           = ones(1,M) * var(X) / sqrt(M);     % variance vector
C           = 1/sqrt(2*pi);                     % just a constant
Ic          = ones(N,1);                        % - enable a row replication by the * operator
Ir          = ones(1,M);                        % - enable a column replication by the * operator
Q           = zeros(N,M);                       % user variable to determine when we have converged to a steady solution
thresh      = 1e-7;
step        = N;
last_step   = 300;         % step/last_step
iter        = 0;
min_iter    = 3000;
while ((( abs((step/last_step)-1) > thresh) & (step>(N*1e-10)) ) & (iter<min_iter) )
    % E step
    % ========
    Q   = Z;
    P   = 1./ (Ic*b) .* exp( -(1e-6+abs(X*Ir - Ic*u))./(Ic*b) );
    for m = 1:M
        Z(:,m)  = (P(:,m)*t(m))./(P*t(:));
    end
    % estimate convergence step size and update iteration number
    prog_text   = sprintf(repmat( '\b',1,(iter>0)*12+ceil(log10(iter+1)) ));
    iter        = iter + 1;
    last_step   = step * (1 + eps) + eps;
    step        = sum(sum(abs(Q-Z)));
    fprintf( '%s%d iterations\n',prog_text,iter );

    % M step
    % ========
    Zm              = sum(Z);               % sum each column
    Zm(find(Zm==0)) = eps;                  % avoid devision by zero
    u               = sum(((X*Ir)./abs(X*Ir - Ic*u)).*Z) ./sum(1./abs(X*Ir - Ic*u).*Z) ;
    b               = sum((abs(X*Ir - Ic*u)).*Z) ./ Zm ;
    t               = Zm/N;
end
end

给出上文统计分布的拟合程序:

clc;clear all;
%generate random
xmin = -10;
xmax = 10;
Len = 10000000;
x = linspace(xmin,xmax,Len);
mu = [3,-4];
b = [0.9 0.4];
w = [0.7 0.3];
fx = w(1)/2/b(1)*exp(-abs(x-mu(1))/b(1))+ w(2)/2/b(2)*exp(-abs(x-mu(2))/b(2));
ymax = 1/b(2);
ymin = 0;
Y = (ymax-ymin)*rand(1,Len)-ymin;
data = x(Y<=fx);
%Laplace Mixture Model fitting
K = 2;
[mu_new,b_new,w_new,iter] = fit_mix_laplace( data',K);
%figure
subplot 221
hist(data,2000);
grid on;
subplot 222
numter = [xmin:.2:xmax];
plot(numter,w_new(1)/2/b_new(1)*exp(-abs(numter-mu_new(1))/b_new(1)),'r','linewidth',2);hold on;
plot(numter,w_new(2)/2/b_new(2)*exp(-abs(numter-mu_new(2))/b_new(2)),'g','linewidth',2);hold on;

subplot (2,2,[3,4])
[histFreq, histXout] = hist(data, numter);
binWidth = histXout(2)-histXout(1);
%Bar
bar(histXout, histFreq/binWidth/sum(histFreq)); hold on;grid on;
plot(numter,w_new(1)/2/b_new(1)*exp(-abs(numter-mu_new(1))/b_new(1)),'r','linewidth',2);hold on;
plot(numter,w_new(2)/2/b_new(2)*exp(-abs(numter-mu_new(2))/b_new(2)),'g','linewidth',2);hold on;

对应结果图(与上文同):

参考

  • Mitianoudis N, Stathaki T. Batch and online underdetermined source separation using Laplacian mixture models[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(6): 1818-1832.

混合拉普拉斯分布(LMM)推导及实现的更多相关文章

  1. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  2. 拉普拉斯分布(Laplace distribution)

    拉普拉斯分布的定义与基本性质 其分布函数为 分布函数图 其概率密度函数为 密度函数图 拉普拉斯分布与正太分布的比较 从图中可以直观的发现拉普拉斯分布跟正太分布很相似,但是拉普拉斯分布比正太分布有尖的峰 ...

  3. 拉普拉斯分布,高斯分布,L1 L2

    之前那篇文章里提到,L1其实是加上服从拉普拉斯分布的先验,L2是加上服从高斯分布的先验: http://www.cnblogs.com/charlesblc/p/7977732.html 那么记住拉普 ...

  4. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. 拉普拉斯(Laplace)分布

    Laplace分布的概率密度函数的形式是这样的: $p(x) = \frac{1}{2 \lambda} e^{-\frac{\vert x –\mu \vert}{\lambda}}$   一般$\ ...

  6. 记录:EM 算法估计混合高斯模型参数

    当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...

  7. 极大既然估计和高斯分布推导最小二乘、LASSO、Ridge回归

    最小二乘法可以从Cost/Loss function角度去想,这是统计(机器)学习里面一个重要概念,一般建立模型就是让loss function最小,而最小二乘法可以认为是 loss function ...

  8. PLSA的EM推导

    本文作为em算法在图模型中的一个应用,推导plsa的em算法. 1 em算法 em算法是解决一类带有隐变量模型的参数估计问题. 1.1 模型的定义 输入样本为,对应的隐变量为.待估计的模型参数为,目标 ...

  9. Lasso回归的坐标下降法推导

    目标函数 Lasso相当于带有L1正则化项的线性回归.先看下目标函数:RSS(w)+λ∥w∥1=∑Ni=0(yi−∑Dj=0wjhj(xi))2+λ∑Dj=0∣wj∣RSS(w)+λ∥w∥1=∑i=0 ...

随机推荐

  1. C#操作XML方式

    前言 前一篇XML读取,现在咱们继续XML操作相关 C#中也有三种操作(增.删.改.查)XML文件方法如下: 使用 XmlDocument(DOM模式) 使用 XmlTextWriter(流模式) 使 ...

  2. 在 Linux OpenVPN 服务端吊销客户端证书

    OpenVPN服务器与 VPN 客户端之间的身份验证, 主要是通过证书来进行的.有时我们需要禁止某个用户连接 VPN 服务器,则将其证书吊销即可.要吊销(Revoke) OpenVPN 客户端证书, ...

  3. Linux编程之ICMP洪水攻击

    我的上一篇文章<Linux编程之PING的实现>里使用ICMP协议实现了PING的程序,ICMP除了实现这么一个PING程序,还有哪些不为人知或者好玩的用途?这里我将介绍ICMP另一个很有 ...

  4. border-radius属性值参数详解

    border-radius是CSS3设置圆角的一个属性,其属性值得单位可以使用:em.px.百分比等等.但是,border-radius属性值得参数形式有好多种,那么具体都代表什么意思呢?下面以实际例 ...

  5. 用sqlyog迁移mysql数据库

    本人大学大学基本就学怎么打游戏了,游戏玩的还不太好,大三的时候突然觉醒报了某培训,然后就出来工作了.这导致许多东西很不扎实,都是在工作中慢慢摸索.今天处理了一个关于mysql数据库迁移的问题,好好总结 ...

  6. Entity Framework Code First约定

    Code First使你能够通过C# 或者 Visual Basic .NET来描述模型,模型的基本规则通过使用约定来进行检查,而约定就是一系列内置的规则. 在Code First中基于类的定义通过一 ...

  7. C语言程序_管理系统

    #include <stdio.h> #include <stdlib.h> #include <string.h> #define N 3 #define LEN ...

  8. 单线程JavaScript

    最近在阅读<你不知道的JavaScript中卷>,当我看到第二部分介绍异步和回调函数的一些知识时,由于该书在第二部分1.2章对线程.事件循环的概念介绍的并非详细,因此引发了我的一系列思考. ...

  9. rips中如何使用PHP虚拟机自带函数--token_get_all

    这两天在看rips源码,发现,它在审计php代码时调用了php虚拟机自带的token_get_all此函数. 这一函数会将php源码按照内置的规则进行归纳,并输出成数组格式. 如: <?php ...

  10. [Selenium With C#学习笔记] Lesson-03 超级链接

    超级链接或链接是Web页面的基本元素之一,而通过超级链接使得万维网可以互联互通.一个典型的链接如下所示: HTML源码如下所示: <a href="index.html" i ...