题目描述

Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has set up a series of tolls that the cows will pay when they traverse the cowpaths throughout the farm.

The cows move from any of the N (1 <= N <= 250) pastures conveniently numbered 1..N to any other pasture over a set of M (1 <= M <= 10,000) bidirectional cowpaths that connect pairs of different pastures A_j and B_j (1 <= A_j <= N; 1 <= B_j <= N). FJ has assigned a toll L_j (1 <= L_j <= 100,000) to the path connecting pastures A_j and B_j.

While there may be multiple cowpaths connecting the same pair of pastures, a cowpath will never connect a pasture to itself. Best of all, a cow can always move from any one pasture to any other pasture by following some sequence of cowpaths.

In an act that can only be described as greedy, FJ has also assigned a toll C_i (1 <= C_i <= 100,000) to every pasture. The cost of moving from one pasture to some different pasture is the sum of the tolls for each of the cowpaths that were traversed plus a *single additional toll* that is the maximum of all the pasture tolls encountered along the way, including the initial and destination pastures.

The patient cows wish to investigate their options. They want you to write a program that accepts K (1 <= K <= 10,000) queries and outputs the minimum cost of trip specified by each query. Query i is a pair of numbers s_i and t_i (1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i) specifying a starting and ending pasture.

Consider this example diagram with five pastures:

The 'edge toll' for the path from pasture 1 to pasture 2 is 3. Pasture 2's 'node toll' is 5.

To travel from pasture 1 to pasture 4, traverse pastures 1 to 3 to 5 to 4. This incurs an edge toll of 2+1+1=4 and a node toll of 4 (since pasture 5's toll is greatest), for a total cost of 4+4=8.

The best way to travel from pasture 2 to pasture 3 is to traverse pastures 2 to 5 to 3. This incurs an edge toll of 3+1=4 and a node toll of 5, for a total cost of 4+5=9.

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。

奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。

FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。

她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。

输入输出格式

输入格式:

  • Line 1: Three space separated integers: N, M, and K

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+M+1: Line j+N+1 contains three space separated

integers: A_j, B_j, and L_j

  • Lines N+M+2..N+M+K+1: Line i+N+M+1 specifies query i using two space-separated integers: s_i and t_i

输出格式:

  • Lines 1..K: Line i contains a single integer which is the lowest cost of any route from s_i to t_i

输入输出样例

输入样例#1:

5 7 2
2
5
3
3
4
1 2 3
1 3 2
2 5 3
5 3 1
5 4 1
2 4 3
3 4 4
1 4
2 3
输出样例#1:

8
9
 #include<bits/stdc++.h>
using namespace std;
const int MAXN=;
const int maxn=0x7ffffff;
int read()
{
int ret=,ok=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')ok=-;
ch=getchar();
}
for(;ch>=''&&ch<='';ch=getchar())
ret=ret*+ch-'';
return ret*ok;
}
int a[MAXN][MAXN];
int spend[MAXN][MAXN];
int b[MAXN];
int n,m,q;
inline void floyd()
{
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int p=a[i][k]+a[k][j]+max(spend[i][k],spend[k][j]);
if((p<a[i][j]+spend[i][j])&&a[i][k]<maxn&&a[k][j]<maxn)
{
a[i][j]=a[i][k]+a[k][j];
spend[i][j]=max(spend[i][k],spend[k][j]);
}
}
}
int main()
{
n=read();
m=read();
q=read();
for(int i=;i<=n;i++)
b[i]=read();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(i==j)
a[i][j]=;
else
a[i][j]=maxn;
}
for(int i=;i<=m;i++)
{
int a1,b1,c;
a1=read(),b1=read(),c=read();
if(a[a1][b1]>c)
{
a[a1][b1]=c;
a[b1][a1]=c;
spend[a1][b1]=max(b[a1],b[b1]);
spend[b1][a1]=max(b[a1],b[b1]);
}
}
floyd();
floyd();
floyd();
for(int i=;i<=q;i++)
{
int x;int y;
x=read(),y=read();
cout<<a[x][y]+spend[x][y]<<endl;
}
return ;
}

我们可以分别记录下从点x到点y 的最短路径的长度和在最短路上的花费

然后就是套Floyd的模板。

但是注意,因为你的长度和花费是分开记录的

所以一遍Floyd跑出来的不一定是最小值

我们可以多跑几遍试试

Luogu P2966 [USACO09DEC]牛收费路径Cow Toll Paths的更多相关文章

  1. P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    P2966 [USACO09DEC]牛收费路径Cow Toll Paths 题目描述 Like everyone else, FJ is always thinking up ways to incr ...

  2. 洛谷 P2966 [USACO09DEC]牛收费路径Cow Toll Paths

    题目描述 Like everyone else, FJ is always thinking up ways to increase his revenue. To this end, he has ...

  3. [Luogu P2966][BZOJ 1774][USACO09DEC]牛收费路径Cow Toll Paths

    原题全英文的,粘贴个翻译题面,经过一定的修改. 跟所有人一样,农夫约翰以宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道 ...

  4. [USACO09DEC]牛收费路径Cow Toll Paths(floyd、加路径上最大点权值的最短路径)

    https://www.luogu.org/problem/P2966 题目描述 Like everyone else, FJ is always thinking up ways to increa ...

  5. [USACO09DEC]牛收费路径Cow Toll Paths

    跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费. 农场中 ...

  6. 洛谷 2966 2966 [USACO09DEC]牛收费路径Cow Toll Paths

    [题意概述] 给出一个图,点有正点权,边有正边权,通过两点的代价为两点间的最短路加上路径通过的点的点权最大值. 有M个询问,每次询问通过两点的代价. [题解] 先把点按照点权从小到大排序,然后按照这个 ...

  7. 【[USACO09DEC]牛收费路径Cow Toll Paths】

    很妙的一道题,我之前一直是用一个非常暴力的做法 就是枚举点权跑堆优化dijkstra 但是询问次数太多了 于是一直只有50分 今天终于抄做了这道题,不贴代码了,只说一下对这道题的理解 首先点权和边权不 ...

  8. P2966 [USACO09DEC]Cow Toll Paths G

    题意描述 Cow Toll Paths G 这道题翻译的是真的不错,特别是第一句话 给定一张有 \(n\) 个点 \(m\) 条边的无向图,每条边有边权,每个点有点权. 两点之间的路径长度为所有边权 ...

  9. Luogu P3033 [USACO11NOV]牛的障碍Cow Steeplechase(二分图匹配)

    P3033 [USACO11NOV]牛的障碍Cow Steeplechase 题意 题目描述 --+------- -----+----- ---+--- | | | | --+-----+--+- ...

随机推荐

  1. [leetcode-567-Permutation in String]

    Given two strings s1 and s2, write a function to return true if s2 contains the permutation of s1. I ...

  2. static方法和非static方法的区别

    ●生命周期(Lifecycle):静态方法(Static Method)与静态成员变量一样,属于类本身,在类装载的时候被装载到内存(Memory),不自动进行销毁,会一直存在于内存中,直到JVM关闭. ...

  3. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  4. 你应该知道的jQuery技巧【收藏】

    jQuery的存在,让学习前端开发的人感到前端越来越容易入门了,用简单的几行代码就可以实现需求,但是,你真的会用jQuery么,当代码运行 后无法看到自己预期的效果,是不是觉得jQuery出了问题,其 ...

  5. Javacript 学习笔记

    一.初探 javacript 学习无法是围绕着对象和属性两个方面来兜圈子,万变不离其宗. 在js中,能点出来的,或者中括号里面的必然是属性(方法).数组除外. 对象调用属性! 对象调用属性! 对象调用 ...

  6. webpack认识

    1 webpack是什么? CommonJS和AMD是用于JavaScript模块管理的两大规范,前者定义的是模块的同步加载,主要用于NodeJS:而后者则是异步加载,通过requirejs等工具适用 ...

  7. maven Spring+Spring MVC+Mybatis+mysql轻量级Java web开发环境搭建

    之前一直在做的一个GIS系统项目,采用了jsp+servlet框架,数据传输框架采用了apache的thrift框架,短时多传的风格还不错,但是较其他的java web项目显得有点太臃肿了,现在给大家 ...

  8. 浅入深出之Java集合框架(中)

    Java中的集合框架(中) 由于Java中的集合框架的内容比较多,在这里分为三个部分介绍Java的集合框架,内容是从浅到深,如果已经有java基础的小伙伴可以直接跳到<浅入深出之Java集合框架 ...

  9. React周末特训班

    Document #react819_content a { text-decoration: none; color: #ef7b2e; border-bottom: 1px solid #ef7b ...

  10. Java 日志框架终极教程

    概述 对于现代的 Java 应用程序来说,只要被部署到真实的生产环境,其日志的重要性就是不言而喻的,很难想象没有任何日志记录功能的应用程序被运行于生产环境中.日志 API 所能提供的功能是多种多样的, ...