Description

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

题意 : 给你 n 个数,分别找出大于等于这些数的欧拉函数值的 x ,使 x 的和最小

//我的思路:首先欧拉函数打表,再分别找出最小值

//之前纠结于 1 1 得出 4 的这组数据 后来看见 Φ (n) = numbers less than n which are relatively prime

//这个题中的规定和欧拉函数不一样 欧拉函数是小于等于 n , 所以在本题中 1 的值 不为 1 而是 0;

#include <iostream>
#include <algorithm>
#include <cstdio>
#define ll long long
using namespace std;
#define max 1123456 ll eular[max]; void init()
{
eular[]=;
for(int i=;i<max;i++)
eular[i]=i;
for(int i=;i<max;i++)
{
if(eular[i]==i)
{
for(int j=i;j<max;j+=i)
eular[j]=eular[j]/i*(i-);
}
}
} int main()
{
ll c,data[],ans,tmp=;
cin>>c;
init();
while(c--)
{
int n;
tmp++;
cin>>n;
ans=;
for(int i=;i<n;i++)
cin>>data[i];
for(int i=;i<n;i++)
{
for(int j=data[i]+;j<max;j++)
if(eular[j]>=data[i])
{
ans+=j;
break;
}
}
printf("Case %lld: %lld Xukha\n",tmp,ans);
}
return ;
}

A - Bi-shoe and Phi-shoe (欧拉函数打表)的更多相关文章

  1. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  2. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  3. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  4. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  5. LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)

    题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...

  6. light1370 欧拉函数打表

    /* 给定n个数ai,要求欧拉函数值大于ai的最小的数bi 求sum{bi} */ #include<bits/stdc++.h> using namespace std; #define ...

  7. 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板

    Problem I. Count Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  8. AcWing 201. 可见的点 (欧拉函数打表)打卡

    在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的. 例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1). 部 ...

  9. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

随机推荐

  1. POJ 1952 BUY LOW, BUY LOWER

    $dp$. 一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时 ...

  2. jdk之String

    学习几个常用的String方法 1.concat /** * Concatenates the specified string to the end of this string. 连接指定的字符串 ...

  3. iOS SDWebImage的使用

    现在把代码贴出来,供大家参考.尤其是新手,看完这篇博客,图片缓存so easy.最后有demo供大家下载,先学习. 第一步,下载SDWebImage,导入工程.github托管地址https://gi ...

  4. JDK根目录介绍

    /bin 存放可执行程序(编译器javac.exe 运行器java.exe 文档生成器javadoc.exe等 ). /db  小型数据库文件. /jre JRE. /include 形成jdk的c. ...

  5. CentOS 7 systemd service开机启动设定

    #vi /etc/systemd/system/xxx.service [Unit] Description=startup script test [Service] Type=simple Exe ...

  6. vscode: Visual Studio Code 常用快捷键

    vscode: Visual Studio Code 常用快捷键 主命令框 F1 或 Ctrl+Shift+P: 打开命令面板.在打开的输入框内,可以输入任何命令,例如: 按一下 Backspace ...

  7. 2015 asia xian regional F Color (容斥 + 组合数学)

    2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Descrip ...

  8. HDU 4442 Physical Examination(贪心)

    HDU 4442 Physical Examination(贪心) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=4442 Descripti ...

  9. C#学习心得,记录学习

  10. Linux Kernel Vhost 架构

    Vhost 回顾 Linux中的vhost驱动程序提供了内核virtio设备仿真. 通常,QEMU用户空间进程模拟guest的I / O访问. Vhost将virtio仿真代码放到内核中,使QEMU用 ...