一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =...

  第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下...

  先对于$1$~$n$的每个数筛出最小的质因子(我肯定是写埃式筛啦),那么乘上一个数$x$相当于乘上$x$的所有质因子,所以从大到小扫一遍每一个数,若$x$被乘了$1$次且$x$不是质数,那么就给$x$的最小质因子$mn_x$和$\frac{x}{mn_x}$的次数+$1$,显然这样最后只会剩下质因子有记录次数,那么这个次数就是质因子的指数了。

  如果求$C(n,m)$,不妨设$n-m\leq m$,那么$m+1$~$n$被乘了$1$次,$1$~$n-m$被除了$1$次,也就是被乘了$-1$次,那么这些数的质因子都应该被减去相应次数。会不会有质因子被减到负数了?我们知道组合数一定是正整数,所以肯定不会出负数啦~

  最后扫一遍所有质数,快速幂一下就可以求得组合数了,$n$以内的质数个数是$O(\frac{n}{logn})$级别的,快速幂是$O(logn)$的,所以复杂度是$O(n)$的。

  对于这题使用卡特兰数的$C(2n,n)/(n+1)$的公式会比较好一些,不算$n+1$的贡献就好了

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
int n, mod, ans;
int p[maxn], mn[maxn], cnt[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void getp()
{
for(int i=;i<=n<<;i++)
if(!v[i])
{
p[++p[]]=i;
for(int j=i<<;j<=n<<;j+=i) v[j]=, !mn[j] && (mn[j]=i);
}
}
inline int power(int a, int b)
{
int ans=;
for(;b;b>>=, a=1ll*a*a%mod)
if(b&) ans=1ll*ans*a%mod;
return ans;
}
inline void add(int x, int delta)
{
cnt[x]+=delta;
if(v[x])
{
cnt[mn[x]]+=cnt[x];
cnt[x/mn[x]]+=cnt[x];
cnt[x]=;
}
}
int main()
{
read(n); read(mod); getp(); ans=;
for(int i=n<<;i>n+;i--) add(i, );
for(int i=n;i>;i--) add(i, -);
for(int i=;i<=p[];i++)
ans=1ll*ans*power(p[i], cnt[p[i]])%mod;
printf("%d\n", ans);
}

bzoj1485: [HNOI2009]有趣的数列(Catalan数)的更多相关文章

  1. bzoj1485: [HNOI2009]有趣的数列(Catalan数)

    1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2105  Solved: 1117[Submit][Stat ...

  2. BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)

    题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...

  3. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  4. BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

    打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...

  5. BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  6. BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)

    题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...

  7. [HNOI2009]有趣的数列 卡特兰数

    题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...

  8. [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数

    有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...

  9. 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列

    Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

  10. [HNOI2009] 有趣的数列——卡特兰数与杨表

    [HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...

随机推荐

  1. Django Rest Framework源码剖析(七)-----分页

    一.简介 分页对于大多数网站来说是必不可少的,那你使用restful架构时候,你可以从后台获取数据,在前端利用利用框架或自定义分页,这是一种解决方案.当然django rest framework提供 ...

  2. 20155328 《网络攻防》 实验一:PC平台逆向破解(5)M

    20155328 <网络攻防> 实验一:PC平台逆向破解(5)M 实践目标 实践对象:linux可执行文件pwn1. 正常执行时,main调用foo函数,foo函数会简单回显任何用户输入的 ...

  3. JS设置状态栏

    JS设置状态栏可通过window.status = str来设置,在后台可通过 ClientScript.RegisterStartupScript( this.GetType(), "12 ...

  4. Asp.Net_获取IP地址

    //方法一 HttpContext.Current.Request.UserHostAddress; //方法二 HttpContext.Current.Request.ServerVariables ...

  5. Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)

    参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...

  6. [git hooks] pre-commit 配置

    在开发过程中,通常使用 eslint 来规范团队的代码风格.但是 eslint 只能在开发服务器启动的时候才去检验代码.如果一个人在不启动开发服务器的情况下,修改了代码直接提交到git,那么别人pul ...

  7. Docker swarm集群搭建教程

    一.什么是Swarm Swarm这个项目名称特别贴切.在Wiki的解释中,Swarm behavior是指动物的群集行为.比如我们常见的蜂群,鱼群,秋天往南飞的雁群都可以称作Swarm behavio ...

  8. 智能合约bug以及修改方案

    截取两篇文章:第一遍文章说的是智能合约能不能修改的问题: ETC转到ETH地址以及转币进ETH智能合约账户能不能转出来? 第0章 引言 如果ETC充值到了ETH地址上,能找回来吗?答案是不一定. ET ...

  9. C# 导入(读取) WPS ET文件

    本文章介绍基于VS2010 Winform 的WPS2016二次开发 ET数据读取程序 本程序支持多个Sheet页面 前提:引用WPS安装目录下的etapi.dll private void butt ...

  10. mysql学习(3)10045错误,连接不上数据库

    mysql8.0默认加密的方式是caching_sha2_password认证方式,当使用navicat 或者程序连接是连接不上, 好吧,那我们修改配置并重启服务可以解决此问题 找到mysql的配置文 ...