bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =...
第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下...
先对于$1$~$n$的每个数筛出最小的质因子(我肯定是写埃式筛啦),那么乘上一个数$x$相当于乘上$x$的所有质因子,所以从大到小扫一遍每一个数,若$x$被乘了$1$次且$x$不是质数,那么就给$x$的最小质因子$mn_x$和$\frac{x}{mn_x}$的次数+$1$,显然这样最后只会剩下质因子有记录次数,那么这个次数就是质因子的指数了。
如果求$C(n,m)$,不妨设$n-m\leq m$,那么$m+1$~$n$被乘了$1$次,$1$~$n-m$被除了$1$次,也就是被乘了$-1$次,那么这些数的质因子都应该被减去相应次数。会不会有质因子被减到负数了?我们知道组合数一定是正整数,所以肯定不会出负数啦~
最后扫一遍所有质数,快速幂一下就可以求得组合数了,$n$以内的质数个数是$O(\frac{n}{logn})$级别的,快速幂是$O(logn)$的,所以复杂度是$O(n)$的。
对于这题使用卡特兰数的$C(2n,n)/(n+1)$的公式会比较好一些,不算$n+1$的贡献就好了
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
int n, mod, ans;
int p[maxn], mn[maxn], cnt[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline void getp()
{
for(int i=;i<=n<<;i++)
if(!v[i])
{
p[++p[]]=i;
for(int j=i<<;j<=n<<;j+=i) v[j]=, !mn[j] && (mn[j]=i);
}
}
inline int power(int a, int b)
{
int ans=;
for(;b;b>>=, a=1ll*a*a%mod)
if(b&) ans=1ll*ans*a%mod;
return ans;
}
inline void add(int x, int delta)
{
cnt[x]+=delta;
if(v[x])
{
cnt[mn[x]]+=cnt[x];
cnt[x/mn[x]]+=cnt[x];
cnt[x]=;
}
}
int main()
{
read(n); read(mod); getp(); ans=;
for(int i=n<<;i>n+;i--) add(i, );
for(int i=n;i>;i--) add(i, -);
for(int i=;i<=p[];i++)
ans=1ll*ans*power(p[i], cnt[p[i]])%mod;
printf("%d\n", ans);
}
bzoj1485: [HNOI2009]有趣的数列(Catalan数)的更多相关文章
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)
题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )
打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... -------------- ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)
题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...
- [HNOI2009]有趣的数列 卡特兰数
题面:[HNOI2009]有趣的数列 题解: 观察到题目其实就是要求从长为2n的序列中选n个放在集合a,剩下的放在集合b,使得集合a和集合b中可以一一对应的使a中的元素小于b. 2种想法(实质上是一样 ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- [HNOI2009] 有趣的数列——卡特兰数与杨表
[HNOI 2009] 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
随机推荐
- 20155216 实验一 逆向与Bof基础
实验一 逆向与Bof基础 一.直接修改程序机器指令,改变程序执行流程 使用 objdump -d pwn1 对pwn1文件进行反汇编. 可知main函数跳转至foo函数,先要使main函数跳转至get ...
- Exp02
使用netcat后门工具 原理示意图 使用netcat获取主机操作Shell,cron启动 Win获取Linux Shell Linux获取Win Shell cron启动 用man -k指令查看有关 ...
- 【TPM】tpm搭建基础指南
pm君第一次通过各种摸索,成功搭建了tpm模拟环境,本篇博客记录了如何去搭建tpm模拟环境,希望能给大家一些帮助. 参考资料(推荐看) ubuntu下安装TPM模拟器 --成功步骤:参考至第2节-安装 ...
- jdbc获取blob类型乱码
一.使用场景: mysql数据库字段类型为longblob,在数据库里看中文字符正常,java读取字串的时候发现中文乱码 使用到了activeMq 二.排查: (1)修改eclipse的环境编码为ut ...
- mfc CTabCtrl
知识点: CTabCtrl常用属性 CTabCtrl类常用成员函数 CTabCtrl代码示例 一.CTabCtrl控件属性 Bottom:底部样式 Vertical:垂直样式 与Bottom结合使用, ...
- openssh7.9 升级笔记
由于全网安全检查需要,要对项目中1280台Linux系统升级SSH及openssl,其中: OPENSSH 升级为 openssh 7.9p 下载地址: openssl 升级为 1.0.2o 下载地 ...
- 页面弹出全屏浮层或遮罩时,禁止底层body滚动
· 解决方法 针对弹出的浮层的 touchmove事件,添加阻止浏览器默认行为. $('.mask-wrapper').on('touchmove', function (event) { // 监听 ...
- rabbitMQ教程(三)一篇文章看懂rabbitMQ
一.rabbitMQ是什么: RabbitMQ,遵循AMQP协议,由内在高并发的erlanng语言开发,用在实时的对可靠性要求比较高的消息传递上. 学过websocket的来理解rabbitMQ应该是 ...
- BugkuCTF 文件上传测试
前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...
- MOSFET的小信号模型和频率响应
这部分内容大部分参考W.Y.Choi的课堂讲义第三讲和第四讲:http://tera.yonsei.ac.kr/class/2007_1/main.htm 一.小信号模型 首先要明确一点,大部分情形M ...