bzoj1190,懒得复制,戳我戳我

Solution:

  • 这道题其实是一个背包(分组背包),但是由于数字比较大,就要重新构造dp式子。啃了三天才懂。
  • \(dp[i][j]\)表示背包容积为\(j*2^i\)时的最大价值。
  • 首先,因为每一个物品一定是\(a*2^b\),我们可以按照\(b\)值先按照普通的分组背包去做,处理出每个\(b\)值所对应的\(dp\)值
  • 然后我们就是要把这些\(dp\)值累积起来,选择每组最大显然不合适,因为有可能每个组都剩下空间,剩余空间累加起来的空间还可以放物品,我们采用一下\(dp\)方法:

\[dp[i][j] = max(dp[i][j] , dp[i][j-k]+dp[i-1][2*k+(w>>(i-1))])
\]

  • \(i\)表示次方,\(j\)表示系数,\(k\)表示让出多少位置给\(i-1\)次方
  • 我们次方从小(\(1\))枚举到大(\(W\)最高位),系数从大枚举到小,要保证\(i\)位上的最大价值是没有更新过得,也就是不包括前面位置(\(2^{i-1}\))的物品,然后加上上一层(\(i-1\))最大放的空间的\(dp\)值(因为空间最大,所以存的价值一定是最大的)
  • 另外还有一个小细节,我们要把前面预处理每组背包时处理到\(2\)倍,因为后面更新时,会把\(i\)层腾的空间传给\(i-1\)层,例如\(i\)层腾了\(k\)空间,也就是\(i-1\)层多有\(2*k\)的空间,再加上\(W\)里面\(i-1\)位的空间就是\(i-1\)的空间最大
  • 最后输出\(dp[cnt][1]\),\(cnt\)是最高位,因为是最高位,所以最高位上一定是\(1\)
  • 看得还是比较迷糊的,戳这里,这个博客讲的挺详细的
  • 好像\(HNOI2007\)的题目都好毒瘤23333……

Code:

//It is coded by Ning_Mew on 4.19
#include<bits/stdc++.h>
#define LL long long
using namespace std; const int maxn=107; int n,cnt=0;
LL W,dp[maxn][2005],v,w; int main(){
while(1){
memset(dp,0,sizeof(dp));
scanf("%d%lld",&n,&W);
if(n==-1)break;
for(int i=1;i<=n;i++){
scanf("%lld%lld",&w,&v);
cnt=0;
while(w%2==0)cnt++,w=w/2;
//cout<<"w:"<<cnt<<' '<<w<<endl;
for(int i=2000;i>=w;i--){
dp[cnt][i]=max(dp[cnt][i],dp[cnt][i-w]+v);
}
}
cnt=0;
for(int i=30;i>=0;i--)if((W>>i)&1){cnt=i;break;}
//cout<<"w:"<<cnt<<' '<<W<<endl;
for(int i=1;i<=cnt;i++){
for(int j=1000;j>=0;j--){
for(int k=0;k<=j;k++){
dp[i][j]=max(dp[i][j],dp[i][j-k]+dp[i-1][2*k+((W>>(i-1))&1)]);
}
}
}
printf("%lld\n",dp[cnt][1]);
}
return 0;
}

【题解】 bzoj1190: [HNOI2007]梦幻岛宝珠 (动态规划)的更多相关文章

  1. bzoj1190 [HNOI2007]梦幻岛宝珠 动态规划

    给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30,并且保证每颗宝石的重量符 ...

  2. bzoj1190 [HNOI2007]梦幻岛宝珠

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1190 [题解] 首先,我们把所有物品都分解成$a\times 2^b$的形式,然后把物品按 ...

  3. bzoj1190 [HNOI2007]梦幻岛宝珠 背包

    题目 https://lydsy.com/JudgeOnline/problem.php?id=1190 题解 好神仙的一道题啊. 既然 \(w_i = a_i\cdot 2^{b_i}\),那么不妨 ...

  4. 【BZOJ1190】[HNOI2007]梦幻岛宝珠 分层背包DP

    [BZOJ1190][HNOI2007]梦幻岛宝珠 Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值. ...

  5. [BZOJ 1190][HNOI2007]梦幻岛宝珠

    1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1057  Solved: 611[Submit][Stat ...

  6. BZOJ 1190 [HNOI2007]梦幻岛宝珠(背包)

    1190: [HNOI2007]梦幻岛宝珠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 798[Submit][Stat ...

  7. luogu 3188 [HNOI2007]梦幻岛宝珠

    LINK:梦幻岛宝珠 时隔多日 我再次挑战这道题.还是以失败告终. 我觉得这一道背包真的有点难度 这是一个数量较少 但是价值和体积较大的背包. 通常的01背包 要不就是体积小 要么是价值小 但这道题给 ...

  8. BZOJ1190[HNOI2007]梦幻岛宝石

    Description 给你N颗宝石,每颗宝石都有重量和价值.要你从这些宝石中选取一些宝石,保证总重量不超过W,且总价值最大为,并输出最大的总价值.数据范围:N<=100;W<=2^30, ...

  9. [HNOI2007]梦幻岛宝珠

    题解: 一道比较好的题目 首先比较显然的就是我们要按照a*2^b的b的顺序来枚举 那么状态f[i][j]表示当前在b,用了a*2^b 刚开始没想到怎么不同层之间搞 看了题解发现非常简单 由于每一层到最 ...

随机推荐

  1. 软件设计、DDD概念及落地时的一些零碎思考和记录2

    主要是项目中一些落地经验和记录 技术人员.开发人员 大部分程序员真的不善于沟通,经常会显得很保守: 他们技术上的困惑.误解乃至郁闷都很难直接的表达清楚: 他们对自己的错误"印象"很 ...

  2. 9.Libraries and visibility 库和可见性

    import和liabrary指令可以帮助你创建模块化,可复用的代码.库不仅仅提供API,也是一个私有化单元:库中已下划线(_)开头的类都是对外不可访问的.每个Dart的应用也是一个包,尽管它没有使用 ...

  3. Android WebView漏洞(转)

    一.漏洞描述 近期,微信等多款安卓流行应用曝出高危挂马漏洞:只要点击好友消息或朋友圈中的一条网址,手机就会自动执行黑客指令,出现被安装恶意扣费软件.向好友 发送欺诈短信.通讯录和短信被窃取等严重后果. ...

  4. Command and Query Responsibility分离模式

    CQRS模式,就是命令和查询责任分离模式. CQRS模式通过使用不同的接口来分离读取数据和更新数据的操作.CQRS模式可以最大化性能,扩展性以及安全性,还会为系统的持续演化提供更多的弹性,防止Upda ...

  5. libgdx学习记录17——照相机Camera

    照相机在libgdx中的地位举足轻重,贯穿于整个游戏开发过程的始终.一般我们都通过Stage封装而间接使用Camera,同时我们也可以单独使用Camera以完成背景的移动.元素的放大.旋转等操作. C ...

  6. 纯 CSS 利用 label + input 实现选项卡

    clip 属性 用于剪裁绝对定位元素. .class { position:absolute; clip:rect(0px,60px,200px,0px); } scroll-behavior: sm ...

  7. Android Studio Xposed模块编写(一)

    1.环境说明 本文主要参考https://my.oschina.net/wisedream/blog/471292?fromerr=rNPFQidG的内容,自己实现了一遍,侵权请告知 已经安装xpos ...

  8. C# Language Specification 5.0 (翻译)第一章 引言

    C#(念作 See Sharp)是一种简单.现代.面向对象并且类型安全的编程语言.C# 源于 C 语言家族,因此 C.C++ 和 Java 工程师们能迅速上手.ECMA 国际[1](ECMA Inte ...

  9. 2017qq红包雨最强攻略

    这个只支持苹果手机,而且要有苹果电脑,只有苹果手机是不行的. QQ红包规则:只要你到达指定的位置,就可以领取附近的红包,一般也就几毛,还有几分的,当然也不排除有更高的,只不过我是没遇到... 那么既然 ...

  10. allegro 封装 (引脚编号修改)

    1. 打开dra文件在find里面 off all  然后只点击text 2.点击需要更改的焊盘 3.菜单栏edit - text 4.弹出窗口修改即可