题目描述

著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字。 例如:

  • L K V E

L L K V E

K K V E KL

V V E KL KK

E E KL KK KV

其含义为:

L+L=L,L+K=K,L+V=V,L+E=E

K+L=K,K+K=V,K+V=E,K+E=KL

…… E+E=KV

根据这些规则可推导出:L=0,K=1,V=2,E=3

同时可以确定该表表示的是4进制加法

//感谢lxylxy123456同学为本题新加一组数据

输入输出格式

输入格式:

n(n≤9)表示行数。

以下n行,每行包括n个字符串,每个字串间用空格隔开。(字串仅有一个为‘+’号,其它都由大写字母组成)

输出格式:

① 各个字母表示什么数,格式如:L=0,K=1,……按给出的字母顺序。

② 加法运算是几进制的。

③ 若不可能组成加法表,则应输出“ERROR!”

输入输出样例

输入样例#1:

5
+ L K V E
L L K V E
K K V E KL
V V E KL KK
E E KL KK KV
输出样例#1:

L=0 K=1 V=2 E=3
4
————————————————————————————————————————————我是分割线————————————————————————————————————————

用样例来举例:

5 + L K V E

L L K V E

K K V E KL

V V E KL KK

E E KL KK KV

其中没有标粗的部分字母有几个这个字母就代表那个数-1

还有一点,两个及两个以上的数字忽略

如:L

L只出现了一次(自己数),所以代表0

K出现了两次,所以代表1

……

记得要判断是否能组成加法表。

 /*
Problem:
OJ:
User: S.B.S.
Time:
Memory:
Length:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<functional>
#include<bitset>
#include<vector>
#include<list>
#define F(i,j,k) for(int i=j;i<k;++i)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define maxn 101
#define inf 0x3f3f3f3f
#define maxm 4001
#define mod 998244353
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int cnt[maxn];
int temp[maxn];
char data[];
int main(int argc,const char *argv)
{
// std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
#ifdef LOCAL
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
#endif
cin>>n;getchar();n--;
F(i,,n){
char str;
getchar();cin>>str;data[i]=str;
}
F(i,,n){
getchar();char ch;cin>>ch;
F(j,,n){
getchar();string str;cin>>str;
if(str.size()==){
F(k,,n){
if(data[k]==str[]){
cnt[k]++;
break;
}
}
}
}
}
F(i,,n) if(cnt[i]-==-){cout<<"ERROR!"<<endl;return ;}
F(i,,n) cout<<data[i]<<"="<<cnt[i]-<<" ";
cout<<endl<<n<<endl;
return ;
}

p1013

noip 1998 洛谷P1013 进制位的更多相关文章

  1. 洛谷P1013 进制位

    P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E ...

  2. 洛谷 P1013 进制位

    P1013 进制位 题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E ...

  3. 洛谷 P1013 进制位 【搜索 + 进制运算】

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: + L K V E L L K V E K K V E KL V V E KL KK E E ...

  4. [NOIP1998] 提高组 洛谷P1013 进制位

    题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...

  5. 洛谷P1017 进制转换

    洛谷P1017 进制转换 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 \(1*10 ...

  6. 洛谷p1017 进制转换(2000noip提高组)

    洛谷P1017 进制转换 题意分析 给出一个数n,要求用负R进制显示. n∈[-32768,32767].R ∈[-20,-2] 考察的是负进制数的转换,需要理解短除法. 看到这道题的时候,我是比较蒙 ...

  7. 洛谷 P1017 进制转换

    推荐洛谷 题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+ ...

  8. [NOIP2000] 提高组 洛谷P1017 进制转换

    题目描述 我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式.例如:123可表示为 1*10^2+2*10^1+3*10^ ...

  9. 洛谷 1017 进制转换 (NOIp2000提高组T1)

    [题解] 纯模拟题. 我们都知道十进制数化成m进制数可以用短除法,即除m取余.逆序排列.而m进制数化为十进制数,按权展开求和即可. 但在本题中进制的基数R可能为负数,我们知道a%R的符号与R一致,也就 ...

随机推荐

  1. P1757 通天之分组背包

    P1757 通天之分组背包背包中的经典问题,我竟然不知道.分组背包就是每个物品有一个所属的小组,小组内的物品会冲突.就是把01背包中的两个for换一下位置01:for(i,1,kind) for(j, ...

  2. [教程] Spring+Mybatis环境配置多数据源

    一.简要概述 在做项目的时候遇到需要从两个数据源获取数据,项目使用的Spring + Mybatis环境,看到网上有一些关于多数据源的配置,自己也整理学习一下,然后自动切换实现从不同的数据源获取数据功 ...

  3. 【Ray Tracing The Next Week 超详解】 光线追踪2-3

     Preface 终于到了激动人心的纹理章节了 然鹅,看了下,并不激动 因为我们之前就接触过 当初有一个 attenuation 吗? 对了,这就是我们的rgb分量过滤器,我们画出的红色.蓝色.绿色等 ...

  4. 容器(Container)Frames和Panels

    Frames 1)是Window的子类 2)具有标题和缩放角 3)从容器继承并以add方式添加组件 4)能以字符串规定的标题来创建不可见框架对象 5)能将BorderLayout当做缺省布局管理器 6 ...

  5. openQPA[01]初次认识与使用

    开源项目QPA 1.项目主页:[http://protocol.sinaapp.com/] 2.项目介绍: 3.运行项目: (1)安装python2.7,并安装PyQt4.   下载地址[https: ...

  6. 【HDU 3590】 PP and QQ (博弈-Anti-SG游戏,SJ定理,树上删边游戏)

    PP and QQ Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  8. Codeforces 749E Gosha is hunting 二分+DP

    很神奇的一题 看完题解不由惊叹 题意:$n$个神奇宝贝 $a$个普通球 $b$个高级球 普通球抓住$i$神奇宝贝的概率为$u[i]$ 高级球为$p[i]$ 一起用为$u[i]+p[i]-u[i]*p[ ...

  9. ELASTIC 5.2部署并收集nginx日志

    elastic 5.2集群安装笔记   设计架构如下: nginx_json_log ->filebeat ->logstash ->elasticsearch ->kiban ...

  10. JVM进程cpu飙高分析

    在项目快速迭代中版本发布频繁  近期上线报错一个JVM导致服务器cpu飙高 但内存充足的原因现象.  对于耗内存的JVM程序来而言,  基本可以断定是线程僵死(死锁.死循环等)问题. 这里是纪录一下排 ...