Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3590   Accepted: 1654

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence.
The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively
on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes. 

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that
batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs,
the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the
jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153. 

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost. 

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in
that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

这题顺着推很难推,因为对于dp[i],查找的dp[k]和前k个部件运完后的时间不知道,而这两者都会影响dp[i],所以考虑倒着推。可以发现每个任务对对最后代价的贡献实际上等于它及它以后的f之和乘以它的时间t,即后面的任务都要为它等上t的时间,会多花f*t的代价。用dp[i]表示i到n部件运送完后所花的最小价值,用st[i]表示i到n的所有时间和,sf[i]表示i到n的所有价值和,那么dp[i]=min(dp[k]+(st[i]-st[k]+s)*f[i]).

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 10050
int dp[maxn];
int t[maxn],v[maxn];
int q[1111111]; int main()
{
int n,m,i,j,s;
while(scanf("%d",&n)!=EOF)
{
scanf("%d",&s);
for(i=0;i<=n;i++)dp[i]=inf;
dp[0]=0;
for(i=1;i<=n;i++){
scanf("%d%d",&t[i],&v[i]);
}
reverse(t+1,t+1+n);
reverse(v+1,v+1+n);
t[0]=v[0]=0;
for(i=1;i<=n;i++){
t[i]=t[i-1]+t[i];
v[i]=v[i-1]+v[i];
} int front,rear;
front=rear=1;
q[rear]=0;
for(i=1;i<=n;i++){
while(front<rear && (dp[q[front+1] ]-dp[q[front] ]<=v[i]*(t[q[front+1] ]-t[q[front] ]) ) ){
front++;
}
int k=q[front];
dp[i]=dp[k]+(s+t[i]-t[k])*v[i];
while(front<rear && (dp[q[rear] ]-dp[q[rear-1] ])*(t[i]-t[q[rear] ])>=(dp[i]-dp[q[rear] ] )*(t[q[rear] ]-t[q[rear-1] ]) ){
rear--;
}
rear++;
q[rear]=i;
}
printf("%d\n",dp[n]);
}
return 0;
}

poj1180 Batch Scheduling的更多相关文章

  1. POJ1180 Batch Scheduling 解题报告(斜率优化)

    题目链接:http://poj.org/problem?id=1180 题目描述: There is a sequence of N jobs to be processed on one machi ...

  2. POJ-1180 Batch Scheduling (分组求最优值+斜率优化)

    题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...

  3. POJ1180 Batch Scheduling -斜率优化DP

    题解 将费用提前计算可以得到状态转移方程: $F_i = \min(F_j + sumT_i * (sumC_i - sumC_j) + S \times (sumC_N - sumC_j)$ 把方程 ...

  4. [POJ1180&POJ3709]Batch Scheduling&K-Anonymous Sequence 斜率优化DP

    POJ1180 Batch Scheduling Description There is a sequence of N jobs to be processed on one machine. T ...

  5. poj 1180 Batch Scheduling (斜率优化)

    Batch Scheduling \(solution:\) 这应该是斜率优化中最经典的一道题目,虽然之前已经写过一道 \(catstransport\) 的题解了,但还是来回顾一下吧,这道题其实较那 ...

  6. POJ 1180 - Batch Scheduling - [斜率DP]

    题目链接:http://poj.org/problem?id=1180 Description There is a sequence of N jobs to be processed on one ...

  7. POJ 1180 Batch Scheduling

    BTW: 刚在图书馆借了本算法艺术与信息学竞赛. 我多次有买这本书的冲动, 但每次在试看之后就放弃了, 倒不是因为书太难, 而是写的实在是太差. 大家对这本书的评价很高, 我觉得多是因为书的内容, 而 ...

  8. POJ 1180 Batch Scheduling (dp,双端队列)

    #include <iostream> using namespace std; + ; int S, N; int T[MAX_N], F[MAX_N]; int sum_F[MAX_N ...

  9. POJ 1180 Batch Scheduling(斜率优化DP)

    [题目链接] http://poj.org/problem?id=1180 [题目大意] N个任务排成一个序列在一台机器上等待完成(顺序不得改变), 这N个任务被分成若干批,每批包含相邻的若干任务. ...

随机推荐

  1. 怎么判断innodb 日志缓冲区该设置为多大呢

    怎么判断innodb 日志缓冲区该设置为多大呢

  2. 【Python】简单的脚本,轻松批量修改文件名称

    使用python脚本,批量修改文件夹名称 先创建一些没用的案例文件 import os #创建新文件夹 dir = os.makedirs('D:\\SomeThing\\testfile') #将文 ...

  3. 【Oracle】查询锁的相关SQL

    --查看有锁的进程 select t2.username,t2.sid,t2.serial#,t2.logon_time,t2.state from v$locked_object t1,v$sess ...

  4. 【葵花宝典】一天掌握Kubernetes

    1.kubernetes介绍 kubernetes,简称K8s,是用8代替8个字符"ubernete"而成的缩写.是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kuber ...

  5. Mac中安装Git

    Mac 安装git 打开Mac终端输入git命令 如果出现以下代码说明已经安装 usage: git [--version] [--help] [-C <path>] [-c <na ...

  6. 大数据系列2:Hdfs的读写操作

    在前文大数据系列1:一文初识Hdfs中,我们对Hdfs有了简单的认识. 在本文中,我们将会简单的介绍一下Hdfs文件的读写流程,为后续追踪读写流程的源码做准备. Hdfs 架构 首先来个Hdfs的架构 ...

  7. Flink可靠性的基石-checkpoint机制详细解析

    Checkpoint介绍 checkpoint机制是Flink可靠性的基石,可以保证Flink集群在某个算子因为某些原因(如 异常退出)出现故障时,能够将整个应用流图的状态恢复到故障之前的某一状态,保 ...

  8. 为什么Go自带的日志默认输出到os.Stderr?

    为什么Go自带的日志默认输出到os.Stderr? - 知乎 https://www.zhihu.com/question/67629357 Note that the Go runtime writ ...

  9. There are only two hard things in Computer Science: cache invalidation and naming things.

    TwoHardThings https://martinfowler.com/bliki/TwoHardThings.html https://github.com/cch123/golang-not ...

  10. 微博CacheService架构浅析 对底层协议进行适配

    https://mp.weixin.qq.com/s/wPR0j2bmHBF6z0ZjTlz_4A 麦俊生 InfoQ 2014-04-21 微博作为国内最大的社交媒体网站之一,每天承载着亿万用户的服 ...