题解-CF1437E Make It Increasing
题面
给 \(n\) 个数 \(a_i\),固定 \(k\) 个下标 \(b_i\),求只修改不在 \(b_i\) 中的下标的值使 \(a_i\) 严格单调递增的最少修改次数。
数据范围:\(1\le n\le 5\cdot 10^5\),\(0\le k\le n\)。
题解
分成 \(k+1\) 段做没有问题,蒟蒻的做法是线段树维护 dp。
旁边老爷的做法是区间长度减去最长上升子序列长度,蒟蒻没想到,还想了单调队列优化好久。
题目转化为对于一个区间,第一个元素最后一个元素固定的最少修改次数。
把 \(a_i\) 减去 \(i\),就变成非严格单调递增了。
设 \(f_i\) 表示不修改 \(i\) 的前缀最少修改次数。
\]
所以可以建一个 \(a_i\) 值域线段树,值为 \(f_i-i\)。
\(f_i\) 的值就是当前线段树 \([0,a_i]\) 之间的最大值 \(+i-1\)。
每次求出 \(f_i\) 后在 \(a_i\) 上更新 \(f_i-i\) 即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
//Data
const int N=5e5+2;
int n,a[N],dn,d[N],k,b[N],ans;
//SegmentTree
const int tN=N<<2;
#define mid ((l+r)>>1)
int mn[tN];
void build(int k=0,int l=0,int r=dn){
mn[k]=iinf; if(r-l==1) return;
build(k*2+1,l,mid),build(k*2+2,mid,r);
}
void pushup(int k){mn[k]=min(mn[k*2+1],mn[k*2+2]);}
void fixmn(int x,int v,int k=0,int l=0,int r=dn){
if(r<=x||x+1<=l) return;
if(r-l==1) return mn[k]=min(mn[k],v),void();
fixmn(x,v,k*2+1,l,mid),fixmn(x,v,k*2+2,mid,r),pushup(k);
}
int rangemn(int x,int y,int k=0,int l=0,int r=dn){
if(r<=x||y<=l) return iinf; if(x<=l&&r<=y) return mn[k];
return min(rangemn(x,y,k*2+1,l,mid),rangemn(x,y,k*2+2,mid,r));
}
//DP
int tmp[N];
int dp(int* arr,int len){
R(i,dn=0,len) d[dn++]=arr[i];
sort(d,d+dn),dn=unique(d,d+dn)-d;
R(i,0,len) tmp[i]=lower_bound(d,d+dn,arr[i])-d;
build(),fixmn(tmp[0],0); int res=-1;
R(i,1,len){
res=rangemn(0,tmp[i]+1)+i-1;
fixmn(tmp[i],res-i);
}
// R(i,0,len) cout<<arr[i]<<' ';cout<<'\n';
// R(i,0,len) cout<<f[i]<<' ';cout<<'\n';
// cout<<f[len-1]<<'\n';
return res;
}
//Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>n>>k,a[0]=-iinf,a[n+1]=+iinf;
R(i,1,n+1) cin>>a[i],a[i]-=i;
R(i,0,k) cin>>b[i];
R(i,1,k)if(a[b[i]]<a[b[i-1]]) cout<<-1<<'\n',exit(0);
if(k==0) ans=dp(a,n+2);
else {
ans+=dp(a,b[0]+1);
R(i,1,k) ans+=dp(a+b[i-1],b[i]-b[i-1]+1);
ans+=dp(a+b[k-1],n-b[k-1]+2);
}
cout<<ans<<'\n';
return 0;
}
祝大家学习愉快!
题解-CF1437E Make It Increasing的更多相关文章
- 【题解】Greatest Common Increasing Subsequence
[题解]Greatest Common Increasing Subsequence vj 唉,把自己当做DP入门选手来总结这道题吧,我DP实在太差了 首先是设置状态的技巧,设置状态主要就是要补充不漏 ...
- LeetCode题解之Longest Continuous Increasing Subsequence
1.题目描述 2.问题分析 从每一个num[i]往前扫描即可. 3.代码 int findLengthOfLCIS(vector<int>& nums) { ){ return n ...
- Lintcode397 Longest Increasing Continuous Subsequence solution 题解
[题目描述] Give an integer array,find the longest increasing continuous subsequence in this array. An in ...
- LeetCode题解之 Increasing Order Search Tree
1.题目描述 2/问题分析 利用中序遍历,然后重新构造树. 3.代码 TreeNode* increasingBST(TreeNode* root) { if (root == NULL) retur ...
- LeetCode题解之Longest Increasing Subsequence
1.题目描述 2.题目分析 使用动态规划,在计算以每个字符结尾的最长子序列. 3.代码 int lengthOfLIS(vector<int>& nums) { ){ ; } ve ...
- Codeforces Round #160 (Div. 1) 题解【ABCD】
Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...
- LeetCode Longest Increasing Path in a Matrix
原题链接在这里:https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, ...
- 【题解】【数组】【查找】【Leetcode】Search in Rotated Sorted Array
Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
随机推荐
- 转 Cache一致性和内存模型
卢本伟牛逼,写得很好 https://wudaijun.com/2019/04/cpu-cache-and-memory-model/ 本文主要谈谈CPU Cache的设计,内存屏障的原理和用法,最后 ...
- 最长回文子串的Manacher算法
对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...
- 使用GitHub API上传文件及GitHub做图床
本文介绍GitHub API基础及上传文件到仓库API,并应用API将GitHub作为图床 GitHub API官方页面 GitHub API版本 当前版本为v3,官方推荐在请求头中显示添加版本标识. ...
- 与pandas初相识
前一阵子有个同事说,他看不懂从kibana上拉下来的日志,但是又想分析一些数据,感觉很头痛,每次都找开发给他整理一下,但是开发也很忙,要数据的频率也略高,那时候正好我跟这位需求方的项目,负责测试工作. ...
- 处理Ceph osd的journal的uuid问题
前言 之前有一篇文章介绍的是,在centos7的jewel下面如果自己做的分区如何处理自动挂载的问题,当时的环境对journal的地方采取的是文件的形式处理的,这样就没有了重启后journal的磁盘偏 ...
- yum 常用命令使用
1.向服务器上传文件或者下载文件 我们知道我们经常需要向服务器上传文件,或者从服务器下载文件,rz和sz命令可以满足我们的要求, 只不过默认情况下是不能使用的.我们需要使用yum install lr ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- Java web项目JXl导出excel,(从eclipse上移动到tomact服务器上,之路径更改)
我用的是jxl导出excel,比较简单,最开始我是固定路径不能选择,很局限,后来改了,而且固定路径当把项目放在服务器上时,路径不可行. 在网上各位大神的帮助成功设置响应头,并且可选保存路径. 1.前端 ...
- 金九银十想去跳槽面试?那这份Java面经你真得看看了,写的非常详细!
前言 前两天在和朋友吃饭的时候聊到时间这个东西是真的过的好坏啊,金三银四仿佛还在昨天.一眨眼金九银十又快到了,对程序员来说这两个是一年最合适的跳槽涨薪环节了,今年的你已经做好准备了吗?不妨看看这篇文章 ...
- ABBYY FineReader 15 对比文档功能
想必大家在办公的时候都有着要处理各种各样文档的烦恼,一个文档经过一个人或不同人的多次修订都是常有的事,拥有文档对比功能的软件也就应势而生.ABBYY FineReader 15 有许多能够帮助我们办公 ...