题面

传送门:https://www.luogu.org/problemnew/show/P2261


Solution

这题显然有一个O(n)的直接计算法,60分到手。

接下来我们就可以拿出草稿纸推一推式子了

首先,取模运算在这里很不和谐,我们得转换一下。

对于任意取模计算,我们都有:

所以,我们可以做以下推算

经过一些手算,我们发现k/i(向下取整)是由一段一段的区间组成的,如下图

显然,每段区间的右端点可以通过二分的方法来找

对于每一段区间,我们可以把k/i提出来,括号里面就变成了(i+(i+1)+(i+2)+(i+3)+.....+右端点) 直接用等差数列来算就好

时间复杂度我不会算XD  


Code

//Luogu P2261 [CQOI2007]余数求和
//Jul,7th
//取模运算推一推
#include<iostream>
#include<cstdio>
using namespace std;
int main(int argc, char **argv)
{
//freopen("sum.in","r",stdin);
//freopen("sum.out","w",stdout);
long long n,K;
scanf("%lld%lld",&n,&K); long long ans=n*K;
for(long long i=1;i<=n;i++)
{
long long temp=K/i;
long long l=i,r=n,mid,nxt=i;
while(l<=r)
{
mid=(l+r)/2;
if(K/mid==temp)
nxt=max(nxt,mid),l=mid+1;
else
r=mid-1;
}
ans-=(((i+nxt)*(nxt-i+1))/2)*temp;
i=nxt;
} printf("%lld",ans);
return 0;
}

正解(C++)

[Luogu P2261] [CQOI2007]余数求和 (取模计算)的更多相关文章

  1. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  2. LUOGU P2261 [CQOI2007]余数求和(数论分块)

    传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...

  3. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  4. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  5. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  6. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  7. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  8. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  9. P2261 [CQOI2007]余数求和

    我是题面 题意还是很清晰,很容易理解 1e9范围明显不能暴力,除非你能把常数优化到\(\frac1 {10}\),但我实在想象不到用了这么多取模怎么把常数优化下去 我们可以把\(k\%i\)变成\(k ...

随机推荐

  1. Python-临时文件文件模块-tempfile

    案例: 某项目中,从传感器中获得采集数据,每收集到1G的数据后做是数据分析,最终只保留数据分析的结果,收集到的数据放在内存中,将会消耗大量内存,我们希望把这些数据放到一个临时的文件中 临时文件不能命名 ...

  2. LightningChart运行互动示例介绍

    LightningChart.NET完全由GPU加速,并且性能经过优化,可用于实时显示海量数据-超过10亿个数据点. LightningChart包括广泛的2D,高级3D,Polar,Smith,3D ...

  3. 内存操作【memset】【memcpy】

    void *memset(void *s, int c, unsigned long n); 将指针变量 s 所指向的前 n 字节的内存单元用一个"整数" c 替换,注意 c 是 ...

  4. 这么美的“vector容器”,你确定你不看吗?

    内容思维导图: 一.vector基本概念: 1.功能: vector数据结构和数组非常相似,也称为单端数组. 2.vector和普通数组的区别: 不同之处在于数组是静态空间,而vector是可以动态扩 ...

  5. Java知识系统回顾整理01基础06数组06二维数组

    一.一维数组和二维数组 这是一个一维数组, 里面的每一个元素,都是一个基本类型int int a[] =new int[]{1,2,3,4,5}; 这是一个二维数组,里面的每一个元素,都是一个一维数组 ...

  6. JS判断PC操作系统版本

    var version = navigator.userAgent; console.log(version); //"Mozilla/5.0 (Windows NT 10.0; WOW64 ...

  7. 深入了解Redis(7)-缓存穿透,雪崩,击穿

    redis作为一个内存数据库,在生产环境中使用会遇到许多问题,特别是像电商系统用来存储热点数据,容易出现缓存穿透,雪崩,击穿等问题.所以实际运用中需要做好前期处理工作. 一.缓存雪崩 1.概念 缓存雪 ...

  8. Python爬虫框架--Scrapy安装以及简单实用

    scrapy框架 框架 ​ -具有很多功能且具有很强通用性的一个项目模板 环境安装: Linux: ​        pip3 install scrapy ​ ​ ​  Windows: ​     ...

  9. BST,Splay平衡树学习笔记

    BST,Splay平衡树学习笔记 1.二叉查找树BST BST是一种二叉树形结构,其特点就在于:每一个非叶子结点的值都大于他的左子树中的任意一个值,并都小于他的右子树中的任意一个值. 2.BST的用处 ...

  10. spring boot:用redis+redisson实现分布式锁(redisson3.11.1/spring boot 2.2)

    一,为什么要使用分布式锁? 如果在并发时锁定代码的执行,java中用synchronized锁保证了线程的原子性和可见性 但java锁只在单机上有效,如果是多台服务器上的并发访问,则需要使用分布式锁, ...