【动态规划】Round Subset
Let's call the roundness of the number the number of zeros to which it ends.
You have an array of n numbers. You need to choose a subset of exactly k numbers so that the roundness of the product of the selected numbers will be maximum possible.
The first line contains two integer numbers n and k (1 ≤ n ≤ 200, 1 ≤ k ≤ n).
The second line contains n space-separated integer numbers a1, a2, ..., an (1 ≤ ai ≤ 1018).
Print maximal roundness of product of the chosen subset of length k.
3 2
50 4 20
3
5 3
15 16 3 25 9
3
3 3
9 77 13
0
In the first example there are 3 subsets of 2 numbers. [50, 4] has product 200 withroundness 2, [4, 20] — product 80, roundness 1, [50, 20] — product 1000, roundness 3.
In the second example subset [15, 16, 25] has product 6000, roundness 3.
In the third example all subsets has product with roundness 0.
题目大意:从N个数中选出M个数使得这M个数的乘积后的0最多。
试题分析:不难发现,构成一个0的条件是2*5,那么对于每一个数字我们求出它的质因数分解中有多少2多少5
dp[i][j]表示选i个数其中有j个2最多有多少个5
那么dp[i][j]=max(dp[i-1][j-t2]+t5);
其中t2为质因数分解中2的个数,t5为质因数分解中5的个数。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<stack>
#include<algorithm>
using namespace std; inline long long read(){
long long x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=1001;
const int INF=0x3f3f3f;
const int n2=206*64;
int MAX=-INF;
int N,M;
int dp[MAXN][n2+1];
long long a[MAXN];
int ans; int main(){
N=read(),M=read();
for(int i=1;i<=N;i++) a[i]=read();
for(int i=0;i<=M;i++)
for(int j=0;j<n2;j++) dp[i][j]=-INF;
dp[0][0]=0;
for(int i=1;i<=N;i++){
long long x=a[i],x2=a[i];
int T2=0,T5=0;
while(x%2==0) x/=2,T2++;
while(x2%5==0) x2/=5,T5++;
for(int k=M;k>=1;k--)
for(int j=T2;j<n2;j++)
dp[k][j]=max(dp[k-1][j-T2]+T5,dp[k][j]);
}
ans=0;
for(int i=1;i<n2;i++)
ans=max(ans,min(dp[M][i],i));
cout<<ans<<endl;
}
【动态规划】Round Subset的更多相关文章
- Codeforces 837D - Round Subset(dp)
837D - Round Subset 思路:dp.0是由2*5产生的. ①dp[i][j]表示选i个数,因子2的个数为j时因子5的个数. 状态转移方程:dp[i][j]=max(dp[i][j],d ...
- D - Round Subset codeforces837d
D - Round Subset 思路:背包: 代码: #include <cstdio> #include <cstring> #include <iostream&g ...
- Codeforces 837D Round Subset(背包)
题目链接 Round Subset 题意 在n个数中选择k个数,求这k个数乘积末尾0个数的最大值. 首先我们预处理出每个数5的因子个数c[i]和2的因子个数d[i] 然后就可以背包了. 设f[i] ...
- Codefroces Educational Round 26 837 D. Round Subset
D. Round Subset time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- CodeForces 837D - Round Subset | Educational Codeforces Round 26
/* CodeForces 837D - Round Subset [ DP ] | Educational Codeforces Round 26 题意: 选k个数相乘让末尾0最多 分析: 第i个数 ...
- Educational Codeforces Round 26 [ D. Round Subset ] [ E. Vasya's Function ] [ F. Prefix Sums ]
PROBLEM D - Round Subset 题 OvO http://codeforces.com/contest/837/problem/D 837D 解 DP, dp[i][j]代表已经选择 ...
- Codeforces 837D Round Subset - 动态规划 - 数论
Let's call the roundness of the number the number of zeros to which it ends. You have an array of n ...
- 【动态规划】【滚动数组】Educational Codeforces Round 26 D. Round Subset
给你n个数,让你任选K个,使得它们乘起来以后结尾的0最多. 将每个数的因子2和因子5的数量求出来,记作a[i]和b[i]. 答案就是max{ min{Σa[i],Σb[i]} }(a[i],b[i]是 ...
- CF837D Round Subset 动态规划
开始的时候数据范围算错了~ 我以为整个序列 2 和 5 的个数都不超过 70 ~ 一个非常水的 dp code: #include <bits/stdc++.h> #define M 75 ...
随机推荐
- POJ 3061 Subsequence ( 尺取法)
题目链接 Description A sequence of N positive integers (10 < N < 100 000), each of them less than ...
- python初步学习-pycharm使用
Pycharm简介 PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试.语法高亮.Project管理.代码跳转.智能提示.自动完成. ...
- 火狐浏览器下点击a标签时出现虚线的解决方案
1.兼容性问题 火狐浏览器下点击a标签时出现虚线 2.解决方案 a:focus { outline: none;}
- 一个python拖库字段的小脚本
import requests import re all_column = dict() all_db = "db_zf,dg_activity,dg_activity_log,dg_ad ...
- 网站服务器压力Web性能测试(2):Webbench:最多模拟3万个并发连接数测试压力
1.Webbench最多可以模拟3万个并发连接数来测试服务器压力,可以设置压力测试时间和测试请求的成功率.安装Webbench命令: wget https://home.tiscali.cz/~cz2 ...
- mybatis源码阅读(动态代理)
这一篇文章主要是记录Mybatis的动态代理学习成果,如果对源码感兴趣,可以看一下上篇文章 https://www.cnblogs.com/ChoviWu/p/10118051.html 阅读本篇的 ...
- Leetcode 之Binary Tree Postorder Traversal(45)
层序遍历,使用队列将每层压入,定义两个队列来区分不同的层. vector<vector<int>> levelorderTraversal(TreeNode *root) { ...
- HDU-5272
Dylans loves numbers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/O ...
- Google Guice 之绑定1
绑定和依赖注入区别 绑定,使用时 需要通过 injector 显示获取 依赖注入,只需要显示获取主类,他的依赖是通过@Injector 和 绑定关系 隐式注入的 http://blog.csdn.ne ...
- php文件上传错误信息
错误信息说明 UPLOAD_ERR_OK:其值为0,没有错误发生,文件上传成功 UPLOAD_ERR_INI_SIZE:其值为1,上传的文件超过了php.ini和upload_max_filesize ...