Description

The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.

In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.

Input

The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.

n    
x1   y1
   
xn   yn

Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.

n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xiyi)–(xi+1yi+1) (1 ≤ i ≤ n − 1) and the line segment (xnyn)–(x1y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.

You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.

The last dataset is followed by a line containing a single zero.

Output

For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.

题目大意:逆时针给出一个凸多边形,求一个点,问这个点离凸多边形的边最远是多少。

思路:二分答案d,然后每条边向内平移d,看能否缩成一个点。

代码(POJ 32MS/UVA 22MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846 inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() const {
return sqrt(x * x + y * y);
}
Point unit() const {
return *this / length();
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Point p[MAXN];
Poly poly;
int stk[MAXN], top;
int n, T; Poly res; Line original[MAXN], newLine[MAXN], deq[MAXN]; bool check(double r) {
for(int i = ; i < n; ++i) newLine[i] = original[i];
for(int i = ; i < n; ++i) moveRight(newLine[i], r);
return half_planes_cross(newLine, n, res, deq);
} int main() {
while(scanf("%d", &n) != EOF && n) {
for(int i = ; i < n; ++i) p[i].read();
p[n] = p[];
for(int i = ; i < n; ++i) original[i] = Line(p[i + ], p[i]);
for(int i = ; i < n; ++i) original[i].makeAg();
double l = , r = 1e9;
for(int i = ; i < ; ++i) {
double mid = (l + r) / ;
if(check(mid)) l = mid;
else r = mid;
}
printf("%.10f\n", l);
}
}

POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)

    题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...

  3. uva 1396 - Most Distant Point from the Sea

    半平面的交,二分的方法: #include<cstdio> #include<algorithm> #include<cmath> #define eps 1e-6 ...

  4. poj3525Most Distant Point from the Sea(半平面交)

    链接 求凸多边形内一点距离边最远. 做法:二分+半平面交判定. 二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核. 本想自己写一个向内推进..仔细一看发现自己的平面交模板上自带.. #in ...

  5. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. UVA 3890 Most Distant Point from the Sea(二分法+半平面交)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11358 [思路] 二分法+半平面交 二分与海边的的距离,由法向量可 ...

  8. 1396 - Most Distant Point from the Sea

    点击打开链接 题意: 按顺序给出一小岛(多边形)的点 求岛上某点离海最远的距离 解法: 不断的收缩多边形(求半平面交) 直到无限小 二分收缩的距离即可 如图 //大白p263 #include < ...

  9. poj 3525Most Distant Point from the Sea【二分+半平面交】

    相当于多边形内最大圆,二分半径r,然后把每条边内收r,求是否有半平面交(即是否合法) #include<iostream> #include<cstdio> #include& ...

随机推荐

  1. iOS之iOS中的(null)、<null>、 nil 的问题

      摘要: 你有没有过这样的经历,就是界面上显示出类似<null>.(null)这样一些东西,有时候还会莫名其妙的闪退.反反复复真是曰了犬,今天来总结一下这个问题的解决方法 前段时间开发过 ...

  2. 卡常三连(快读快写+re)

    快读: inline int in() { char ch; ; '))); a*=;a+=ch-'; ,a+=ch-'; return a; } 快写: inline void out(int a) ...

  3. python初学者日记01(字符串操作方法)

    时间:2018/12/16 作者:永远的码农(博客园) 环境: win10,pycharm2018,python3.7.1 1.1  基础操作(交互输入输出) input = input(" ...

  4. ABAP术语-Technical Object

    Technical Object 原文:http://www.cnblogs.com/qiangsheng/archive/2008/03/18/1111205.html Generic term f ...

  5. centos7安装ftp

    1.服务器初始化检查 检查selinux,firewall,iptables是否开启 1.查看selinux的运行状态 [root@zeq ~] getenforce Disabled 我的现在是关闭 ...

  6. 01-http简介-四层 七层 三次握手

    HTTP简介.请求方法与响应状态码 接下来想系统的回顾一下TCP/IP协议族的相关东西,当然这些东西大部分是在大学的时候学过的,但是那句话,基础的东西还是要不时的回顾回顾的.接下来的几篇博客都是关于T ...

  7. PHP基础4--函数-数组

    主要 函数 数组 常用系统函数 函数 基础 1)定义 function 函数名([$形参1],[$形参2],.....) { //函数体 } 点击查看函数定义形式 2) 调用 函数名([$实参1][, ...

  8. 传说是小米家的一道面试题难倒了某Java程序员。扑克牌排序问题。

    网上说的是有位网友在面试小米Java岗三次后,终于挺进了第三轮面试,结果还是败在了两道算法题上面. 1.写个读方法和写方法,实现读写锁 2.一副从1到n的牌,每次从牌堆顶取一张放桌子上,再取一张放牌堆 ...

  9. 成都Uber优步司机奖励政策(3月17日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  10. LiteOS创建任务的一个BUG

    在任务创建的时候,参数无法传递,第二个参数本来是用来做参数传递的,但是却没用到,很尴尬啊,缺少了这个功能,很多无法写了? osThreadId_t osThreadNew (osThreadFunc_ ...