hdu6073 Matching In Multiplication 分析+拓扑序
Matching In Multiplication
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 787 Accepted Submission(s): 222

Little Q misunderstands the definition of bipartite graph, he thinks the size of U is equal to the size of V, and for each vertex p in U, there are exactly two edges from p. Based on such weighted graph, he defines the weight of a perfect matching as the product of all the edges' weight, and the weight of a graph is the sum of all the perfect matchings' weight.
Please write a program to compute the weight of a weighted ''bipartite graph'' made by Little Q.
In each test case, there is an integer n(1≤n≤300000) in the first line, denoting the size of U. The vertex in U and V are labeled by 1,2,...,n.
For the next n lines, each line contains 4 integers vi,1,wi,1,vi,2,wi,2(1≤vi,j≤n,1≤wi,j≤109), denoting there is an edge between Ui and Vvi,1, weighted wi,1, and there is another edge between Ui and Vvi,2, weighted wi,2.
It is guaranteed that each graph has at least one perfect matchings, and there are at most one edge between every pair of vertex.
2
2 1 1 4
1 4 2 3
/**
题目:hdu6073 Matching In Multiplication
链接:http://acm.hdu.edu.cn/showproblem.php?pid=6073
题意: 思路:
首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点。通过拓扑我们可以不断去掉所有度数为1的点。 那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。 这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。 时间复杂度O(n)。 */
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
#define lson L,m,rt<<1
typedef pair<int,int> P;
#define rson m+1,R,rt<<1|1
const int mod = ;
const double eps = 1e-;
const int N = 6e5+;
int cnt[N], vis[N];
int a[N], an, n;
LL ans;
vector<P>G[N];
queue<int> q;
int now;
void solve(int r,int f,LL &ansl,LL &ansr,int step)
{
for(int i = ; i < (int)G[r].size(); i++){
if(G[r][i].first!=f&&(vis[G[r][i].first]==||G[r][i].first==now)){
vis[G[r][i].first] = ;
if(step%==){
ansl = ansl*G[r][i].second%mod;
}else
{
ansr = ansr*G[r][i].second%mod;
}
if(G[r][i].first==now){///回到起点。
return ;
}else
return solve(G[r][i].first,r,ansl,ansr,step+);
}
}
}
/*
void input()
{
for(int i = 1; i <= n; i+=2){
G[i].push_back(P(i+n,1));
G[i].push_back(P(i+n+1,1));
G[i+1].push_back(P(i+n,1));
G[i+1].push_back(P(i+n+1,1));
G[i+n].push_back(P(i,1));
G[i+n+1].push_back(P(i,1));
G[i+n].push_back(P(1+i,1));
G[i+n+1].push_back(P(1+i,1));
cnt[i+n]+=2;
cnt[i+n+1]+=2;
}
}*/
int main()
{
//freopen("C:\\Users\\accqx\\Desktop\\in.txt","r",stdin);
int T;
cin>>T;
int u1, w1, u2, w2;
while(T--)
{
scanf("%d",&n);
memset(cnt, , sizeof cnt);
memset(vis, , sizeof vis);
for(int i = ; i <= *n; i++) G[i].clear();
//input();
for(int i = ; i <= n; i++){
scanf("%d%d%d%d",&u1,&w1,&u2,&w2);
G[i].push_back(P(u1+n,w1));
G[i].push_back(P(u2+n,w2));
G[u1+n].push_back(P(i,w1));
G[u2+n].push_back(P(i,w2));
cnt[u1+n]++;
cnt[u2+n]++;
}
ans = ;
while(!q.empty()) q.pop();
for(int i = n+; i <= n*; i++){
if(cnt[i]==){
q.push(i);
}
}
while(!q.empty()){
int r = q.front();
q.pop();
int len = G[r].size();
int pos;
for(int i = ; i < len; i++){
if(vis[G[r][i].first]==){
vis[G[r][i].first] = ;
ans = ans*G[r][i].second%mod;
pos = G[r][i].first;
break;
}
} len = G[pos].size();
for(int i = ; i < len; i++){
if(G[pos][i].first!=r){
cnt[G[pos][i].first]--;
if(cnt[G[pos][i].first]==){
q.push(G[pos][i].first);
}
}
}
}
LL ansl, ansr;
for(int i = ; i <= n; i++){
if(vis[i]==){
now = i;
vis[i] = ;
ansl = ansr = ;
solve(i,-,ansl,ansr,);
ans = ans*(ansl+ansr)%mod;
}
}
printf("%lld\n",ans);
}
return ;
}
hdu6073 Matching In Multiplication 分析+拓扑序的更多相关文章
- HDU 6073 Matching In Multiplication(拓扑排序)
Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K ( ...
- HDU 6073 Matching In Multiplication(拓扑排序+思维)
http://acm.hdu.edu.cn/showproblem.php?pid=6073 题意:有个二分图,左边和右边的顶点数相同,左边的顶点每个顶点度数为2.现在有个屌丝理解错了最佳完美匹配,它 ...
- HDU 6073 Matching In Multiplication dfs遍历环 + 拓扑
Matching In Multiplication Problem DescriptionIn the mathematical discipline of graph theory, a bipa ...
- [正经分析] DAG上dp两种做法的区别——拓扑序与SPFA
在下最近刷了几道DAG图上dp的题目. 要提到的第一道是NOIP原题<最优贸易>.这是一个缩点后带点权的DAG上dp,它同时规定了起点和终点. 第二道是洛谷上的NOI导刊题目<最长路 ...
- HDU 6073 - Matching In Multiplication | 2017 Multi-University Training Contest 4
/* HDU 6073 - Matching In Multiplication [ 图论 ] | 2017 Multi-University Training Contest 4 题意: 定义一张二 ...
- 2017 多校4 Matching In Multiplication(二分图)
Matching In Multiplication 题解: 首先如果一个点的度数为1,那么它的匹配方案是固定的,继而我们可以去掉这一对点.通过拓扑我们可以不断去掉所有度数为1的点. 那么剩下的图中左 ...
- 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)
3832: [Poi2014]Rally Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 168 Solved: ...
- BZOJ-4010 菜肴制作 贪心+堆+(拓扑图拓扑序)
无意做到...char哥还中途强势插入干我...然后据他所言,看了一会题,一转头,我爆了正解....可怕 4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec Memory L ...
- hdu5438(2015长春赛区网络赛1002)拓扑序+DFS
题意:给出一张无向图,每个节点有各自的权值,问在点数为奇数的圈中的点的权值总和是多少. 通过拓扑序的做法标记出所有非圈上的点,做法就是加每条边的时候将两点的入度都加一,然后将所有度数为1的点入队,删去 ...
随机推荐
- 【Shell】linux中shell变量$#,$@,$0,$1,$2的含义解释 && set 关键字使用
linux中shell变量$#,$@,$0,$1,$2的含义解释 摘抄自:ABS_GUIDE 下载地址:http://www.tldp.org/LDP/abs/abs-guide.pdf linu ...
- animateBackground-plugin
(function ($) { if (!document.defaultView || !document.defaultView.getComputedStyle) { var oldCurCSS ...
- 搭建dubbo-admin-2.5.3
dubbo管理界面 一,安装zookeeper 1,下载包zookeeper-3.3.3.tar.gz 2,解压 tar zxvf zookeeper-3.3.3.tar.gz cd zookeepe ...
- static 关键字 静态属性与方法 -> :: self $this 区别 可见性的关键字区别
1.声明类属性或方法为静态,就可以不实例化类而直接访问.静态属性不能通过一个类已实例化的对象来访问(但静态方法可以). 2.由于静态方法不需要通过对象即可调用,所以伪变量 $this 在静态方法中不可 ...
- [转]bing壁纸天天换 初识shell魅力
原文链接:http://www.cnblogs.com/atskyline/p/3679522.html 原文的程序跑在window上,curl的使用不太一样,想要获取的图片也不太一样.修改后的代码如 ...
- 安装kubernetes dashboard
一.kubernetes dashboard kubernetes dashboard是k8s的web管理界面 二.安装 k8s的版本为1.5 1.创建dashboard-controller.yam ...
- 算法笔记_065:分治法求逆序对(Java)
目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 分治法(归并排序) 1 问题描述 给定一个随机数数组,求取这个数组中的逆序对总个数.要求时间效率尽可能高. 那么,何为逆序对? 引用自百度 ...
- POI-word转html
package com.test.poiword; import android.app.Activity; import android.os.Bundle; import android.webk ...
- 使用scrapy进行12306车票查询
概述 通过12306的查询API进行查询某日火车票, 结果保存在csv文件中. 详细 代码下载:http://www.demodashi.com/demo/12623.html 一.环境搭建 1. 安 ...
- 键盘enter按钮出发登陆事件
$("#nameInput").focus();$(".txtUserName").keydown(function (event) { if (event.k ...