题目描述

给出四堆石子,石子数分别为a,b,c,d。规定每次只能从堆顶取走石子,问取走所有石子的方案数。

输入描述:

在一行内读入四个由空格分隔的整数a,b,c,d, 输入均为不超过500的正整数

输出描述:

输出一个整数表示答案,答案对109+7取模

示例1
输入

3 5 4 2
输出

2522520

备注:

输入均为不超过500的正整数

【分析】

每一堆的石子之间的相对位置是固定不变的,所以可以通过插入来生成一个取石子的顺序,而插入的求解则可以利用组合数来计算。 起始的时候,把第一堆的$$$a$$$个石头摆好,相当于在$$$a$$$个空位放下$$$a$$$个石头,由于石头顺序是固定的,所以有$$$C^a_a$$$种,也就是1种;

接下来,把第二堆的$$$b$$$个石头也加进来,要在$$$a$$$个石头之间以及两边插入$$$b$$$个石头,等价于一共有$$$a+b$$$个位置,在其中选$$$b$$$个位置,作为放置$$$b$$$的地方,由于$$$b$$$的顺序确定,所以组合数为$$$C^b_{a+b}$$$个

然后把第三堆的$$$c$$$个石头也加进来,在$$$a+b$$$个石头插入$$$c$$$个石头,同理,组合数为$$$C^c_{a+b+c}$$$个;

第四堆的$$$d$$$加进来就是$$$C^d_{a+b+c+d}$$$个。 所以最终答案为$$$C^a_a \times C^b_{a+b} \times C^c_{a+b+c} \times C^d_{a+b+c+d}$$$个

【注意】

组合数较大需要用long long存放;对答案需要取模 可以对组合数打表,来避免分数取模,公式为$$$C^x_y = C^x_{y-1} + C^{x-1}_{y-1}$$$

【代码】

#include<stdio.h>
#define N_max 2005
int n;
typedef long long ll;
#define mod 1000000007 ll C[N_max][N_max] = { 0 };
#define min(a,b) ((a)<(b)?(a):(b)) int main() { int a[4];
ll res = 1;
for (int t = 0; t < N_max; ++t)C[t][0]=1; for (int i = 1; i <N_max; ++i)
for (int j = 1; j <=i; ++j) {
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j])%mod;
}
for (int i = 0; i < 4; ++i)
{
scanf("%d", a + i);
}
res = C[a[0]][a[0]];
res = res*C[a[0] + a[1]][a[1]]%mod;
res = res*C[a[0] + a[1]+a[2]][a[2]]%mod;
res = res*C[a[0] + a[1]+a[2]+a[3]][a[3]]%mod; printf("%lld", res);
return 0;
}

Wannafly 挑战赛16 A 取石子的更多相关文章

  1. Wannafly挑战赛16

    E(pbds) 题意: 1<=m,n<=5e5 分析: 首先指向关系形成了一个基环外向树森林 实际上我们可以完全不用真正的去移动每个球,而只需要在计数的时候考虑考虑就行了 对于树上的情况, ...

  2. Wannafly挑战赛16 #E 弹球弹弹弹 splay+基环树+各种思维

    链接:https://ac.nowcoder.com/acm/problem/16033来源:牛客网 有n个位置,标号为1到n的整数,m次操作,第i次操作放置一个弹球在b[i] xor c[i-1]处 ...

  3. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  4. 【挑战赛16A】【取石子】【组合数学】

    链接:https://www.nowcoder.com/acm/contest/113/A 来源:牛客网 取石子时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 262144K,其他语言5 ...

  5. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  6. 【COGS 56】质数取石子

    [问题描述] DD 和 MM 正在玩取石子游戏.他们的游戏规则是这样的:桌上有若干石子,DD 先取,轮流取,每次必须取质数个.如果某一时刻某一方无法从桌上的石子中取质数个,比如说剩下 0 个或 1 个 ...

  7. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  8. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  9. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

随机推荐

  1. Hibernate学习笔记一

    1 框架体系结构 2 hibernate入门 2.1 ORM框架 Hibernate是一个数据持久化层的ORM框架. Object:对象,java对象,此处特指JavaBean Relational: ...

  2. 20145209刘一阳《网络对抗》Exp2 后门原理与实践

    20145209刘一阳<网络对抗>Exp2 后门原理与实践 基础问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? •在网上下载软件的时候,后门很有可能被捆绑在下载的软件当中: ...

  3. VINS(一)简介与代码结构

    VINS-Mono和VINS-Mobile是香港科技大学沈劭劼团队开源的单目视觉惯导SLAM方案.是基于优化和滑动窗口的VIO,使用IMU预积分构建紧耦合框架.并且具备自动初始化,在线外参标定,重定位 ...

  4. 一分钟了解spark的调优

    Tuning Spark 数据序列化 内存调优 内存管理概述 确定内存消耗 调整数据结构 序列化 RDD 存储 垃圾收集调整 其他注意事项 并行度水平 减少任务的内存使用 广播大的变量 数据本地化 概 ...

  5. Mac安装php和redis扩展

    Mac上有特定的包管理工具homebrew,也叫brew,这里的php安装用的就是brew 1安装php brew install php@7.0. brw安装会自动管理依赖,所以不用你一个个先安装依 ...

  6. 一个小白的测试环境docker化之路

    本文来自网易云社区 作者:叶子 学习docker搭建测试环境断断续续也有三个多月了,希望记录一下这个过程.常言道,总结过去,展望未来嘛~文章浅显,还望各位大神路过轻拍. 按照国际惯例,先说一下背景: ...

  7. hdu1527取石子游戏(威佐夫博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. 搜索二维矩阵 II

    描述 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复的整数. 样例 ...

  9. Machine Learning分类:监督/无监督学习

    从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learnin ...

  10. 实用的ES6特性

    1. 函数参数默认值 不使用ES6 为函数的参数设置默认值: function foo(height, color) { var height = height || 50; var color = ...