题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields. Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20). FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

FJ发现他的牛经常跑到附近的草地去吃草,FJ准备给每个草地种足够的草供这个草地以及附近草地的奶牛来吃。FJ有N个草地(1<=N<=100000),有N-1条双向道路连接这些草地,FJ精心设计了这些道路使每两个草地有且仅有一条简单路径连接。第i个草场有Ci头牛,有时候奶牛会走过K条道路到其他草地吃草。FJ想知道每个草场最多可能有的奶牛数量Mi,即所有走过K条道路后可能到达i的奶牛总数。

输入

* Line 1: Two space-separated integers, N and K.

* Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

* Lines N+1..2N:

Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

输出

* Lines 1..N: Line i should contain the value of M(i).

样例输入

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6

样例输出

15
21
16
10
8
11


题解

树形dp

由于直接推出答案比较困难,所以我们可以现在子树中寻找答案,然后再求父树中。

设f[x][k]表示x子树中到x的距离为k的的点的点权之和,

显然有f[x][k]=∑f[to[i]][k-1]。

再设g[x][k]表示整棵树中到x的距离为k的点的点权之和。

首先有g[1][k]=f[1][k],g[x][0]=v[x],剩下的就只能从上到下dp了。

我们已经知道子树中的答案,差的就是父树。

而如果父树中的点到to[i]的距离为k,那么这些点到x的距离必然为k-1.

于是我们就可以通过g[x][k-1]推出g[to[i]][k]。

然而这样当k≥2时会重复计算子树中的某些点,这些点到x的为k-1,那么到to[i]的距离必然为k-2。

这样就再减去f[to[i]][k-2]即可。

最终状态转移方程就为g[to[i]][k]=f[to[i]][k]+g[x][k-1]-f[to[i]][k-2]。

最后答案就是∑g[i][j] (0≤j≤k)

#include <cstdio>
#include <algorithm>
using namespace std;
int f[100010][25] , g[100010][25] , c[100010] , head[100010] , to[200010] , next[200010] , cnt , k;
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dp1(int x , int fa)
{
int i , j;
f[x][0] = c[x];
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
dp1(to[i] , x);
for(j = 1 ; j <= k ; j ++ )
f[x][j] += f[to[i]][j - 1];
}
}
}
void dp2(int x , int fa)
{
int i , j;
for(i = head[x] ; i ; i = next[i])
{
if(to[i] != fa)
{
g[to[i]][0] = c[to[i]];
for(j = 1 ; j <= k ; j ++ )
{
g[to[i]][j] = f[to[i]][j] + g[x][j - 1];
if(j >= 2) g[to[i]][j] -= f[to[i]][j - 2];
}
dp2(to[i] , x);
}
}
}
int main()
{
int n , i , j , x , y , ans;
scanf("%d%d" , &n , &k);
for(i = 1 ; i < n ; i ++ )
scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &c[i]);
dp1(1 , 0);
for(i = 0 ; i <= k ; i ++ )
g[1][i] = f[1][i];
dp2(1 , 0);
for(i = 1 ; i <= n ; i ++ )
{
ans = 0;
for(j = 0 ; j <= k ; j ++ )
ans += g[i][j];
printf("%d\n" , ans);
}
return 0;
}

【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp的更多相关文章

  1. [Usaco 2012 Feb]Nearby Cows

    题目描述 FJ发现他的牛经常跑到附近的草地去吃草,FJ准备给每个草地种足够的草供这个草地以及附近草地的奶牛来吃.FJ有N个草地(1<=N<=100000),有N-1条双向道路连接这些草地, ...

  2. 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. luogu 3047 [USACO12FEB]附近的牛Nearby Cows 树形dp

    $k$ 十分小,直接暴力维护 $1$~$k$ 的答案即可. 然后需要用父亲转移到儿子的方式转移一下. Code: #include <bits/stdc++.h> #define M 23 ...

  4. [USACO12FEB] 附近的牛 Nearby Cows - 树形dp,容斥

    给你一棵 \(n\) 个点的树,点带权,对于每个节点求出距离它不超过 \(k\) 的所有节点权值和 \(m_i\) 随便定一个根,设\(f[i][j]\)表示只考虑子树,距离为\(j\)的权值和,\( ...

  5. USACO翻译:USACO 2012 FEB Silver三题

    USACO 2012 FEB SILVER 一.题目概览 中文题目名称 矩形草地 奶牛IDs 搬家 英文题目名称 planting cowids relocate 可执行文件名 planting co ...

  6. [P2996][USACO10NOV]拜访奶牛Visiting Cows (树形DP)

    之前写在洛谷,结果没保存,作废…… 听说考前写题解RP++哦 思路 很容易想到是 树形DP 如果树形DP不知道是什么的话推荐百度一下 我在这里用vector储存边 设状态f[i][0]为i点不访问,f ...

  7. USACO 2012 Feb Cow Coupons

    2590: [Usaco2012 Feb]Cow Coupons Time Limit: 10 Sec Memory Limit: 128 MB Submit: 349 Solved: 181 [Su ...

  8. [USACO 2012 Feb Gold] Cow Coupons【贪心 堆】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=118 传送门2:http://www.lydsy.com/JudgeOn ...

  9. [luoguP3047] [USACO12FEB]附近的牛Nearby Cows(DP)

    传送门 dp[i][j][0] 表示点 i 在以 i 为根的子树中范围为 j 的解 dp[i][j][1] 表示点 i 在除去 以 i 为根的子树中范围为 j 的解 状态转移就很好写了 ——代码 #i ...

随机推荐

  1. VINS(八)初始化

    首先通过imu预积分陀螺仪和视觉特征匹配分解Fundamental矩阵获取rotationMatrix之间的约束关系,联立方程组可以求得外参旋转矩阵: 接下来会检测当前frame_count是否达到W ...

  2. spring源码-事件&监听3.6

    一.spring中的发布与监听模式,是我们最常用的一种观察者模式.spring在其中做了很多优化,目的就是让用户更好的使用事件与监听的过程. 二.常用的事件与监听中涉及到的接口和类为:Applicat ...

  3. php post

    post form function post($remote_server,$data,$second=60){ $ch = curl_init();if(is_string($data)){ $t ...

  4. 纯净CentOS安装PHP网站环境

    一.MySQL数据库 安装mysql: yum install mysql mysql-server 启动mysql: /etc/init.d/mysqld start 或  service mysq ...

  5. KubeCon深度洞察 | KubeEdge开源首秀

    以下内容根据华为云DJ在KubeCon Shanghai Demo Session演讲实录整理而成. KubeEdge Demo Show 11月15日上午Huawei宣布了KubeEdge项目开源, ...

  6. mysql5.6 无法远程连接问题解决

    需要配置mysql5.6版本的my.cnf文件,我的my.cnf文件配置如下: port=3306是我后来自己加上的.加上这个之后重启mysql service mysqld restart 记得给r ...

  7. Appium_Python_API说明

    Appium_Python_API 1.contexts contexts(self): Returns the contexts within the current session. 返回当前会话 ...

  8. Java进阶知识点: 枚举值

    Java进阶知识点1:白捡的扩展性 - 枚举值也是对象   一.背景 枚举经常被大家用来储存一组有限个数的候选常量.比如下面定义了一组常见数据库类型: public enum DatabaseType ...

  9. Hadoop,MapReduce操作Mysql

    前以前帖子介绍,怎样读取文本数据源和多个数据源的合并:http://www.cnblogs.com/liqizhou/archive/2012/05/15/2501835.html 这一个博客介绍一下 ...

  10. [leetcode-670-Maximum Swap]

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...