Description

Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.

FJ wants to build a fence around a contiguous group of these fields
in order to maximize the average number of cows per field within that
block. The block must contain at least F (1 <= F <= N) fields,
where F given as input.

Calculate the fence placement that maximizes the average, given the constraint.

Input

* Line 1: Two space-separated integers, N and F.

* Lines 2..N+1: Each line contains a single integer, the number of
cows in a field. Line 2 gives the number of cows in field 1,line 3 gives
the number in field 2, and so on.

Output

* Line
1: A single integer that is 1000 times the maximal average.Do not
perform rounding, just print the integer that is 1000*ncows/nfields.

Sample Input

10 6
6
4
2
10
3
8
5
9
4
1

Sample Output

6500

题意:

给定一个正整数序列a,求一个平均数最大的、长度不小于L的子段。

Solution:

本题由于是求平均数的最大值,我们很容易往二分方向上想,二分答案的关键是如何取check,判定“是否存在一个长度不小与L的子段平均数不小于二分的值”。

考虑这样一种思路,把数列中每个数都减去二分的值,就转化为判断是否存在一个长不小于L的子段,子段和非负。继续思考,

1、若没有L的限制,只需O(n)扫描数列不断加数当和为负数时就把当前子段清空,扫描过程中出现过的最大子段和即为所求。

2、求一个子段它的和最大且长度不小与L。子段和可以转化为前缀和相减的形式,即设sumi表示ai~aj的和,则:

仔细观察上面的式子容易发现,随着i的增长,j的取值范围0~i-L每次只会增大1。换言之,每次只会有一个新的取值进入min{sumj}的候选集合,所以我们没有必要每次循环枚举j,只需要用一个变量记录当前的最小值,每次与新的取值sumi-L取min就可以了。

于是我们只需要看一下最大子段和是不是非负数就可以确定二分上下界的变化范围了。

(没看懂没事,第一遍我也没看懂,仔细看并对照代码,f**k真的简单巧妙!)

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define il inline
#define ll long long
#define debug printf("%d %s\n",__LINE__,__FUNCTION__)
using namespace std;
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
const double eps=1e-;
int n,L;
double a[],b[],sum[];
int main()
{
n=gi(),L=gi();
for(int i=;i<=n;i++)a[i]=gi();
double l=-1e6,r=1e6;
while(r-l>eps){
double mid=(l+r)/,ans=-1e10,minn=1e10;
for(int i=;i<=n;i++)b[i]=a[i]-mid;
for(int i=;i<=n;i++)sum[i]=sum[i-]+b[i];
for(int i=L;i<=n;i++)minn=minn<sum[i-L]?minn:sum[i-L],ans=max(ans,sum[i]-minn);
if(ans>=)l=mid;else r=mid;
}
printf("%d\n",int(r*));
return ;
}

poj2018——Best Cow Fences的更多相关文章

  1. POJ2018 Best Cow Fences —— 斜率优化DP

    题目链接:https://vjudge.net/problem/POJ-2018 Best Cow Fences Time Limit: 1000MS   Memory Limit: 30000K T ...

  2. POJ-2018 Best Cow Fences(二分加DP)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10174 Accepted: 3294 Desc ...

  3. loj#10012\poj2018 Best Cow Fences(二分)

    题目 #10012 「一本通 1.2 例 2」Best Cow Fences 解析 有序列\(\{a_i\}\),设\([l,r]\)上的平均值为\(\bar{x}\),有\(\sum_{i=l}^r ...

  4. [USACO2003][poj2018]Best Cow Fences(数形结合+单调队列维护)

    http://poj.org/problem?id=2018 此乃神题……详见04年集训队论文周源的,看了这个对斜率优化dp的理解也会好些. 分析: 我们要求的是{S[j]-s[i-1]}/{j-(i ...

  5. Poj2018 Best Cow Fences

    传送门 题目大意就是给定一个长度为 n 的正整数序列 A ,求一个平均数最大的,长度不小于 L 的子序列. 思路: 二分答案. Code: #include<iostream> #incl ...

  6. POJ2018 Best Cow Fences 二分

    实数折磨人啊啊啊啊啊啊啊 好,实数应该是最反人类的东西了...... 这个害得我调了0.5天才过. 大意是这样的:给你一个数列,求其中不少于f个的连续数的最大平均值. 不禁想起寒假的课程来... 此处 ...

  7. POJ-2018 Best Cow Fences 二分

    题意:找到一个连续区间,区间的长度至少大于f,现在要求这个区间的平均值最大. 题解: 二分找答案. 每次对于2分的mid值, 都把原来的区间减去mid, 然后找到一长度至少为f的区间, 他们的区间和& ...

  8. poj2018 Best Cow Fences[二分答案or凸包优化]

    题目. 首先暴力很好搞,但是优化的话就不会了.放弃QWQ. 做法1:二分答案 然后发现平均值是$ave=\frac{sum}{len}$,这种形式似乎可以二分答案?把$len$移到左边. 于是二分$a ...

  9. POJ 2018 Best Cow Fences(二分+最大连续子段和)

    Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14601 Accepted: 4720 Desc ...

随机推荐

  1. 初识Trie_对Trie的一些认识

    Trie,之前觉得一个听起来很diao的数据结构,学了发现其实是一个挺简单的数据结构. 在计算机科学中,trie,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串.与二叉查找树 ...

  2. android 学习十四 探索安全性和权限

    1.部署安全性:应用程序必须使用数字证书才能安装到设备上. 2.执行期间的安全性:    2.1 使用独立进程    2.2 使用固定唯一用户ID    2.3  申明性权限模型   3数字证书   ...

  3. 写了个汉字转G代码工具,无描边的那种,市面上没有类似的小软件

    学了不少G代码知识, 将公司废旧的三轴非标设备改造成了一个雕刻机,市面上的小软件不好用 网上下的软件有描边的,字体刻起来太粗,这个比较好用,看图应该都能明白吧, 就自己写了个,“少于150字的随笔不允 ...

  4. Jenkis 无法下载插件问题解决

    在新机器上安装jenkins后,安装插件报如下错误 sun.security.provider.certpath.SunCertPathBuilderException: unable to find ...

  5. window上小而美的软件(推荐度按排名)

    window上小而美的软件,推荐度按排名 Notepad++ 更好用更强大的笔记本 QTranslate 本地翻译神器 7-zip 解压缩软件 Wox 程序/文件/快捷 神器 1! Everthing ...

  6. 《Effective C++》读书笔记 资源管理

    C++程序中最常用的资源包括动态分配的内存,文件描述器,互斥锁,数据库连接,网络socket等等.不论哪种资源,重要的是,当你不再使用他时,必须将他归还给系统. 一个很好的做法是以对象管理资源.把资源 ...

  7. lr 常用操作

    lr脚本编写语法: web_add_cookie();:服务器注入cookies lr_save_string("网址或其他","参数2");:一个保存函数,它 ...

  8. 开源自动驾驶仿真平台 AirSim (1) - Unreal Engine

    AirSim 官方Github: https://github.com/Microsoft/AirSim AirSim 是微软的开源自动驾驶仿真平台(其实它还能做很多事情,这里主要用于自动驾驶仿真研究 ...

  9. 简析@Resource 和 @Autowired的区别

    @Autowird @Autowird 属于spring框架,默认使用类型(byType)进行注入,例如下面代码: @Autowired public IUserService userService ...

  10. Docker 镜像构建的时候,应该小心的坑

    不要改文件 如果run了以后,你还需要进入到容器中,修改容器的配置,那么,这个容器是危险的.一旦容器无法启动,就再也改不了配置.那么你就需要删除和重新run这个容器,而配置要再改一遍.一个可用的镜像在 ...