【BZOJ】2705: [SDOI2012]Longge的问题
【题意】给定n,求∑gcd(i,n),(1<=i<=n),n<=2^32
【算法】数论(欧拉函数,gcd)
【题解】批量求gcd的题目常常可以反过来枚举gcd的值。
记f(g)为gcd(i,n)=g的i的个数,则有ans=∑f(g)*g,g|n。
gcd(i,n)=g即gcd(i/g,n/g)=1,f(g)转化为φ(n/g)。
所以,ans=∑g*φ(n/g),g|n。
当然,这种纯数论问题也可以用公式法直接求解。
引用自:clover_hxy
gcd分解:d|gcd(a,b)=d|a&&d|b
过程中,[d|i]表示d是否整除i。

(图片来源:clover_hxy)
解释:第一步,用公式∑d|nφ(d)=n转化出欧拉函数。第二步,分解gcd,d|gcd(i,n)=d|i&&d|n,选择枚举d|n并依次判断d|i是否成立。
第三步,交换顺序。第四步,对于每个d,1~n中能被d整除的数字个数为n/d,得到ans=φ(d)*n/d,d|n。这个公式和之前的一致。
具体实现:
1.枚举1~sqrt(n)寻找n的因数
2.枚举2~sqrt(n)寻找n的素因数,n每次除尽已枚举到的质因数,最后x>1则x是大质数。
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
ll n,ans;
ll phi(ll x){
ll num=x;
for(ll i=;i*i<=x;i++)if(x%i==){
num=num*(i-)/i;
while(x%i==)x/=i;
}
if(x>)num=num*(x-)/x;
return num;
}
int main(){
scanf("%lld",&n);
ans=;
for(ll i=;i*i<=n;i++)if(n%i==){
ans+=phi(n/i)*i;
if(i*i!=n)ans+=phi(i)*n/i;
}
printf("%lld",ans);
return ;
}
【BZOJ】2705: [SDOI2012]Longge的问题的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
- [bzoj 2705][SDOI2012]Longge的问题(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...
随机推荐
- 2-c语言作业1
#include<stdio.h> #include<math.h> int main(void) { int money,year; double rate,sun; pri ...
- adb shell input keyevent值所对应的字符
转自:http://blog.csdn.net/chen825919148/article/details/18732041 0 --> "KEYCODE_UNKNOWN" ...
- 单行文字溢出和多行文字溢出省略号显示的CSS样式
单行文字溢出,CSS样式 <h6 style="width:70px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis ...
- linux svn apache
借助apache运行的svn服务器 一:安装Apache HTTP Server 1.安装Apache HTTP Server yum install httpd httpd-devel -y 2.修 ...
- BZOJ 1196 公路修建问题(二分+最小生成树)
题目要求求出图中的一颗生成树,使得最大的边权最小,且满足一级公路的个数>=k. 考虑二分最大边,问题就变为给出的图的生成树中,是否满足所有的边<=val,且一级公路的个数>=k. 所 ...
- tcp协议的六个标识位
6个标识位: URG 紧急指针,告诉接收TCP模块紧要指针域指着紧要数据. ACK 置1时表示确认号(为合法,为0的时候表示数据段不包含确认信息,确认号被忽略. PSH 置1时请求的数据段在接收方得到 ...
- 求熵 python 代码
#coding=gbk import nltk import math def entropy(labels): freqdist = nltk.FreqDist(labels) #Frequency ...
- [HNOI2008]GT考试 矩阵优化DP
---题面--- 题解: 一开始看觉得很难,理解了之后其实还挺容易的. 首先我们考虑朴素DP: 令f[i][j]表示长串到了第i项, 与不吉利数字(模式串)匹配到了第j项的方案. 显然ans = f[ ...
- 你可能使用了Spring最不推荐的注解方式
前言 使用Spring框架最核心的两个功能就是IOC和AOP.IOC也就是控制反转,我们将类的实例化.依赖关系等都交由Spring来处理,以达到解耦合.利用复用.利于测试.设计出更优良程序的目的.而对 ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...