在实施backprop时,有一个测试叫做梯度检验,它的作用是确保backprop正确实施。因为有时候,虽然写下了这些方程式,却不能100%确定,执行backprop的所有细节都是正确的。为了逐渐实现梯度检验,首先说说如何计算梯度的数值逼近。

先画出函数\(f\),标记为\(f\left( \theta \right)\),\(f\left( \theta \right)=\theta^{3}\),先看一下\(\theta\)的值,假设\(\theta=1\),不增大\(\theta\)的值,而是在\(\theta\) 右侧,设置一个\(\theta +\varepsilon\),在\(\theta\)左侧,设置\(\theta -\varepsilon\)。因此\(\theta=1\),\(\theta +\varepsilon =1.01,\theta -\varepsilon =0.99\),,跟以前一样,\(\varepsilon\)的值为0.01,看下这个小三角形,计算高和宽的比值,就是更准确的梯度预估,选择\(f\)函数在\(\theta -\varepsilon\)上的这个点,用这个较大三角形的高比上宽,技术上的原因就不详细解释了,较大三角形的高宽比值更接近于\(\theta\)的导数,把右上角的三角形下移,好像有了两个三角形,右上角有一个,左下角有一个,通过这个绿色大三角形同时考虑了这两个小三角形。所以得到的不是一个单边公差而是一个双边公差。

写一下数据算式,图中绿色三角形上边的点的值是\(f( \theta +\varepsilon )\),下边的点是\(f( \theta-\varepsilon)\),这个三角形的高度是\(f( \theta +\varepsilon)-f(\theta -\varepsilon)\),这两个宽度都是ε,所以三角形的宽度是\(2\varepsilon\),高宽比值为\(\frac{f(\theta + \varepsilon ) - (\theta -\varepsilon)}{2\varepsilon}\),它的期望值接近\(g( \theta)\),\(f( \theta)=\theta^{3}\)传入参数值,\(\frac {f\left( \theta + \varepsilon \right) - f(\theta -\varepsilon)}{2\varepsilon} = \frac{{(1.01)}^{3} - {(0.99)}^{3}}{2 \times0.01}\),大家可以暂停视频,用计算器算算结果,结果应该是3.0001,而当\(\theta =1\)时,\(g( \theta)=3\theta^{2} =3\),所以这两个\(g(\theta)\)值非常接近,逼近误差为0.0001,前面只考虑了单边公差,即从\(\theta\)到\(\theta +\varepsilon\)之间的误差,\(g( \theta)\)的值为3.0301,逼近误差是0.03,不是0.0001,所以使用双边误差的方法更逼近导数,其结果接近于3,现在更加确信,\(g( \theta)\)可能是\(f\)导数的正确实现,在梯度检验和反向传播中使用该方法时,最终,它与运行两次单边公差的速度一样,实际上,认为这种方法还是非常值得使用的,因为它的结果更准确。

这是一些可能比较熟悉的微积分的理论,如果不太明白讲的这些理论也没关系,导数的官方定义是针对值很小的\(\varepsilon\),导数的官方定义是\(f^{'}\theta) = \operatorname{}\frac{f( \theta + \varepsilon) -f(\theta -\varepsilon)}{2\varepsilon}\),这里有涉及到微积分的知识。

对于一个非零的\(\varepsilon\),它的逼近误差可以写成\(O(\varepsilon^{2})\),ε值非常小,如果\(\varepsilon=0.01\),\(\varepsilon^{2}=0.0001\),大写符号\(O\)的含义是指逼近误差其实是一些常量乘以\(\varepsilon^{2}\),但它的确是很准确的逼近误差,所以大写\(O\)的常量有时是1。然而,如果用另外一个公式逼近误差就是\(O(\varepsilon)\),当\(\varepsilon\)小于1时,实际上\(\varepsilon\)比\(\varepsilon^{2}\)大很多,所以这个公式近似值远没有左边公式的准确,所以在执行梯度检验时,使用双边误差,即\(\frac{f\left(\theta + \varepsilon \right) - f(\theta -\varepsilon)}{2\varepsilon}\),而不使用单边公差,因为它不够准确。

如果不理解上面两条结论,所有公式都在这儿,不用担心,如果对微积分和数值逼近有所了解,这些信息已经足够多了,重点是要记住,双边误差公式的结果更准确。

这篇讲了如何使用双边误差来判断别人给的函数\(g( \theta)\),是否正确实现了函数\(f\)的偏导,现在可以使用这个方法来检验反向传播是否得以正确实施,如果不正确,它可能有bug需要来解决。

神经网络优化篇:详解梯度的数值逼近(Numerical approximation of gradients)的更多相关文章

  1. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  4. 【零基础】神经网络优化之dropout和梯度校验

    一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...

  5. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  6. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  7. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

  8. Canal:同步mysql增量数据工具,一篇详解核心知识点

    老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...

  9. java提高篇-----详解java的四舍五入与保留位

    转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...

  10. 组件--Fragment(碎片)第二篇详解

    感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...

随机推荐

  1. 拯救Win7,2023该如何正确升级?

    对于现存的Win7系统用户,微软曾多次提醒将在2023年1月停止对Win7与Win8.1的安全更新和技术支持.而转眼已经来到2023,时间已到,对于Win7,微软已经再也不管了,停止为Win7用户提供 ...

  2. redis基本数据类型 Hash

    Hash 类型 Hash类型的常见命令 HSET key field value: 添加或者修改hash类型key的field的值HGET key field: 获取一个hash类型key的field ...

  3. oracle 验证流水存在性火箭试优化

    在生产中经常遇到"select * from  tbl_IsExist where date=?"的SQL,经与开发人员沟通得知此SQL是验证流水存在性,若不存在则插入,若存在退出 ...

  4. Python开发之Django框架

    一. Django框架 01.网络软件开发架构演变过程 02.HTTP协议讲解 03.web应用与框架介绍及手撸web框架 04.Django入门项目创建与必会三板斧 05.Django静态文件配置与 ...

  5. Android历史版本

    目录 [隐藏]  1 测试版 2 版本列表 2.1 Android 1.0 2.2 Android 1.1 2.3 Android 1.5 Cupcake 2.4 Android 1.6 Donut ...

  6. 【createWrapper】根据条件类创建查询wrapper

    前几天写一个有几十个字段的查询wrapper,写得我心烦意乱.然后就琢磨了一下能不能只传一个条件类对像就能创建对应的wrapper.去看了下mybatis-plus的文档没看到合适的api,有一个创建 ...

  7. 什么???CSS也能原子化!

    1.什么是原子化 CSS? Atomic CSS is the approach to CSS architecture that favors small, single-purpose class ...

  8. CodeTON Round 4 (Div. 1 + Div. 2)C

    C. Make It Permutation 我们希望尽可能少地进行操作可以使代价最小,我们如果要排列的话,那些重复的元素我们无论如何都要进行删除的,所以我们可以先把去重的代价计算出来,然后依次枚举排 ...

  9. 【PySide6】QChart笔记(一)—— 用QDateTimeAxis作为x轴绘制多条折线图

    一.QDateTimeAxis简介 1. 官方描述 https://doc.qt.io/qtforpython-6/PySide6/QtCharts/QDateTimeAxis.html QDateT ...

  10. .NET快速对接极光消息推送

    什么是消息推送? 很多手机APP会不定时的给用户推送消息,例如一些新闻APP会给用户推送用户可能感兴趣的新闻,或者APP有更新了,会给用户推送是否选择更新的消息等等,这就是所谓的"消息推送& ...