在实施backprop时,有一个测试叫做梯度检验,它的作用是确保backprop正确实施。因为有时候,虽然写下了这些方程式,却不能100%确定,执行backprop的所有细节都是正确的。为了逐渐实现梯度检验,首先说说如何计算梯度的数值逼近。

先画出函数\(f\),标记为\(f\left( \theta \right)\),\(f\left( \theta \right)=\theta^{3}\),先看一下\(\theta\)的值,假设\(\theta=1\),不增大\(\theta\)的值,而是在\(\theta\) 右侧,设置一个\(\theta +\varepsilon\),在\(\theta\)左侧,设置\(\theta -\varepsilon\)。因此\(\theta=1\),\(\theta +\varepsilon =1.01,\theta -\varepsilon =0.99\),,跟以前一样,\(\varepsilon\)的值为0.01,看下这个小三角形,计算高和宽的比值,就是更准确的梯度预估,选择\(f\)函数在\(\theta -\varepsilon\)上的这个点,用这个较大三角形的高比上宽,技术上的原因就不详细解释了,较大三角形的高宽比值更接近于\(\theta\)的导数,把右上角的三角形下移,好像有了两个三角形,右上角有一个,左下角有一个,通过这个绿色大三角形同时考虑了这两个小三角形。所以得到的不是一个单边公差而是一个双边公差。

写一下数据算式,图中绿色三角形上边的点的值是\(f( \theta +\varepsilon )\),下边的点是\(f( \theta-\varepsilon)\),这个三角形的高度是\(f( \theta +\varepsilon)-f(\theta -\varepsilon)\),这两个宽度都是ε,所以三角形的宽度是\(2\varepsilon\),高宽比值为\(\frac{f(\theta + \varepsilon ) - (\theta -\varepsilon)}{2\varepsilon}\),它的期望值接近\(g( \theta)\),\(f( \theta)=\theta^{3}\)传入参数值,\(\frac {f\left( \theta + \varepsilon \right) - f(\theta -\varepsilon)}{2\varepsilon} = \frac{{(1.01)}^{3} - {(0.99)}^{3}}{2 \times0.01}\),大家可以暂停视频,用计算器算算结果,结果应该是3.0001,而当\(\theta =1\)时,\(g( \theta)=3\theta^{2} =3\),所以这两个\(g(\theta)\)值非常接近,逼近误差为0.0001,前面只考虑了单边公差,即从\(\theta\)到\(\theta +\varepsilon\)之间的误差,\(g( \theta)\)的值为3.0301,逼近误差是0.03,不是0.0001,所以使用双边误差的方法更逼近导数,其结果接近于3,现在更加确信,\(g( \theta)\)可能是\(f\)导数的正确实现,在梯度检验和反向传播中使用该方法时,最终,它与运行两次单边公差的速度一样,实际上,认为这种方法还是非常值得使用的,因为它的结果更准确。

这是一些可能比较熟悉的微积分的理论,如果不太明白讲的这些理论也没关系,导数的官方定义是针对值很小的\(\varepsilon\),导数的官方定义是\(f^{'}\theta) = \operatorname{}\frac{f( \theta + \varepsilon) -f(\theta -\varepsilon)}{2\varepsilon}\),这里有涉及到微积分的知识。

对于一个非零的\(\varepsilon\),它的逼近误差可以写成\(O(\varepsilon^{2})\),ε值非常小,如果\(\varepsilon=0.01\),\(\varepsilon^{2}=0.0001\),大写符号\(O\)的含义是指逼近误差其实是一些常量乘以\(\varepsilon^{2}\),但它的确是很准确的逼近误差,所以大写\(O\)的常量有时是1。然而,如果用另外一个公式逼近误差就是\(O(\varepsilon)\),当\(\varepsilon\)小于1时,实际上\(\varepsilon\)比\(\varepsilon^{2}\)大很多,所以这个公式近似值远没有左边公式的准确,所以在执行梯度检验时,使用双边误差,即\(\frac{f\left(\theta + \varepsilon \right) - f(\theta -\varepsilon)}{2\varepsilon}\),而不使用单边公差,因为它不够准确。

如果不理解上面两条结论,所有公式都在这儿,不用担心,如果对微积分和数值逼近有所了解,这些信息已经足够多了,重点是要记住,双边误差公式的结果更准确。

这篇讲了如何使用双边误差来判断别人给的函数\(g( \theta)\),是否正确实现了函数\(f\)的偏导,现在可以使用这个方法来检验反向传播是否得以正确实施,如果不正确,它可能有bug需要来解决。

神经网络优化篇:详解梯度的数值逼近(Numerical approximation of gradients)的更多相关文章

  1. PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明

    PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载   中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...

  2. 走向DBA[MSSQL篇] 详解游标

    原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...

  3. Scala进阶之路-Scala函数篇详解

    Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...

  4. 【零基础】神经网络优化之dropout和梯度校验

    一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...

  5. CentOS 7 下编译安装lnmp之PHP篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...

  6. CentOS 7 下编译安装lnmp之MySQL篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...

  7. CentOS 7 下编译安装lnmp之nginx篇详解

    一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168   ...

  8. Canal:同步mysql增量数据工具,一篇详解核心知识点

    老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...

  9. java提高篇-----详解java的四舍五入与保留位

    转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...

  10. 组件--Fragment(碎片)第二篇详解

    感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...

随机推荐

  1. C#集成ViewFaceCore人脸检测识别库

    前言 人脸检测与识别现在已经很成熟了,C# 上有 ViewFaceCore 这个很方便的库,但这种涉及到 native 调用的库,一般会有一些坑,本文记录一下开发和部署的过程. 本文的项目是 AIHu ...

  2. Solution -「SP 106」BINSTIRL

    Description Link. 求 \(\begin{Bmatrix}n \\ m\end{Bmatrix}\bmod2\) Solution 求 \[\begin{aligned} \begin ...

  3. Solution -「HDU 3507」Print Article

    Description Link. 给出 \(N\) 个单词,每个单词有个非负权值 \(C_{i}\),现要将它们分成连续的若干段,每段的代价为此段单词的权值和,还要加一个常数 \(M\),即 \(( ...

  4. ISO/OSI七层模型的分层与作用

    ISO/OSI的七层模型 第七层:应用层 为用户提供服务,给用户一个操作界面,如window的图形界面,Linux的命令行: 第六层:表示层 数据提供表示:把01二进制转换为图像数字等用户可以看懂的内 ...

  5. 《最新出炉》系列初窥篇-Python+Playwright自动化测试-17-处理鼠标悬停

    1.简介 有些测试场景或者事件,playwright根本就没有直接提供方法去操作,而且也不可能把各种测试场景都全面覆盖提供方法去操作.比如:就像鼠标悬停,一般测试场景鼠标悬停分两种常见,一种是鼠标悬停 ...

  6. MySQL系列之主从复制进阶——延时从库、半同步、过滤复制、GTID复制

    目录 1. 延时从库 1.1介绍 1.2 为什么要有延时从 1.3 配置延时从库 1.4 延时从库应用 1.4.1 故障恢复思路 1.4.2 故障模拟及恢复 2. 半同步 *** 2.1 半同步复制工 ...

  7. Python面向对象——1、什么是异常 2、为何处理异常 3、如何处理异常? 4、何时使用异常处理 网络编程的一些预备知识

    文章目录 异常 1.什么是异常 2.为何处理异常 3.如何处理异常? 4.何时使用异常处理 网络编程的一些预备知识 异常 1.什么是异常 异常是程序发生错误的信号.程序一旦出现错误,便会产生一个异常, ...

  8. 基于 ACK Serverless 解锁你家萌宠的 AI 形象

    基于 ACK Serverless 解锁你家萌宠的 AI 形象详情      1. 计费说明 必看!!必看!!必看!! 本实验为付费体验,需要消耗账号费用.体验后若不再需要使用,请及时释放资源,避免持 ...

  9. 如何使用DALL-E 3

    如何使用 DALL-E 3:OpenAI 图像生成指南 DALL-E 3 是 OpenAI 图像生成器的高级版本,它可以理解自然语言提示来创建详细图像. 它克服了以前版本的方形图像限制,现在支持各种宽 ...

  10. C#/.NET/.NET Core优秀项目和框架2023年10月简报

    前言 公众号每月定期推广和分享的C#/.NET/.NET Core优秀项目和框架(公众号每周至少推荐两个优秀的项目和框架当然节假日除外),公众号推文有项目和框架的介绍.功能特点以及部分截图等(打不开或 ...