Coursera, Big Data 5, Graph Analytics for Big Data, Week 3
Graph Analytics 有哪些类型

node type (labels)

node schema: attributes 组成了schema.

同样的, Edge也有 Edge Type 和Edge Schema

如果是一个完整的图,会包含以下信息

weight 权重,比如两点之间的 距离

1. Path Analytics
一些定义:
walk - 图上随便走的轨迹
path - 没有中间node重复的walk,比如 A-B-C-D-B-E 这个属于walk 不属于 path, path 是constrained 的walk
Cycle - 3个以上节点组成的环
Acyclic - 无环图, 比如最常见的说法 DAG- directed acyclic graph.
trail - 没有edge 重复的walk
dimeter of graph - 从任何一个node出发, 到任何另一个node, 走最短路径,最后得到的最大hops 就是 dimeter

最短路径问题
Dijkstra's Algorithm


上面是简化版本的,现在考虑加上constrain


Dijkstra 算法在大数据情况下表现不好,计算量很大
2. Connectivity Analytics
名词 degree 指这个Node有多少个连接的edge
主要关注图的 robust 和 相似性


连接度 Connectivity
下图是基于node 的connectivity, 去掉三个node 就隔开了图,所有connectivity 等于 3

下图是基于edge 的connectivity, 去掉4个edge就隔开了图,所有说 edge connectivity = 4.

node degree: 就是有多少条edge连接到node上
- Define a node's in-degree (# of incoming edges) and out-degree (# of outgoing edges)
- Describe a process for calculating the similarity of two graphs by finding the following for each graph and comparing them: find the degree of each node in a graph, then create a histogram of how many nodes have a certain degree.
- Define listener nodes (greater in-degree than out-degree), talker nodes (greater out-degree than in-degree) and communicator nodes (high in-degree and high out-degree).
node degree 进一步分成 indegree 和 outdegree


3. Community Analytics
- List the three types of analytics questions asked about communities (static, evolution, and predictions) and identify a real world example of a question in those categories.
- Calculate the internal degree and external degree of nodes in a community.
- Recognize that, for a community to really be a community, the relative number of total edges within that community (cluster) should be high relative to the total number of edges from nodes in the community to nodes outside it.



怎么从network里面找到 community呢?这里介绍了两种方法,一种是关注 Local property
Clique - 小集团的意思,每个node都和其他node有连接

实际上,find 大于3或者4的clique比较难,所有我们要relax clique的定义,有两种relaxation, 一种基于distance, 一种基于density, 其中两种基于distance的定义是n-clique 和 n-clan, 基于density的是k-core.
下面是n-clique的说明,Mike 不属于绿色点形成的2-clique

n-clan 纠正了这种情况


前面是讲基于 local property 的community 发现算法,接着将基于 grobal property 的community 发现算法
By the end of this video you will be able to...
- Describe modularity conceptually -- a graph is more modular if there are more edges in that community than would be likely if edges were randomly assigned.
- Given two graphs, identify visually which is more modular.
- Identify the 6 ways in which communities are often tracked over time.
- Identify which of the 6 changes would happen when two companies merge and when a company spins off a start-up.
grobal property 特别关注的property 是 modularity
然后讲到了基于modularity 的community 发现方法叫 Louvain method. 具体详情见 https://www.youtube.com/watch?v=dGa-TXpoPz8


相对于static graph, 经常见的还有 evolving graph. 有6种类型的evolving method.

4. Centrality Analytics
By the end of this video you will be able to...
- Define an influencer in a social network as a node (e.g. person) who can reach all other nodes quickly.
- Identify the 2 key (central) player problems: Which nodes when removed will maximally disrupt a network and which set of nodes can reach (almost) all other nodes in a network.
- Identify the 4 types of centrality discussed: degree, group, closeness, and betweenness.
- Identify which type of centrality you would want to identify in the following 2 cases: when you have information you want to inject quickly into a graph that follows shortest paths for dissemination and when you have a commodity that flows through a network.

两个概念 Centrality and Centralization
Centralization is for a network. As the number of nodes in a network with high centrality increases (orange nodes), then the centralization of a network decreases -- because there is less variation in the centrality values of the nodes in the network.

有超过30种的测量centrality 的方法



讲 connectivity 时候提到了power law 算法,不知道具体是什么
Ref
https://afteracademy.com/blog/dijkstras-algorithm Dijkstras 算法有图解,很清楚
Coursera, Big Data 5, Graph Analytics for Big Data, Week 3的更多相关文章
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data》 密歇根大学 Charles Severance——Week6 JSON and the REST Architecture课堂笔记
Coursera课程<Using Python to Access Web Data> 密歇根大学 Week6 JSON and the REST Architecture 13.5 Ja ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data 》 密歇根大学 Charles Severance——Week2 Regular Expressions课堂笔记
Coursera课程<Using Python to Access Web Data > 密歇根大学 Charles Severance Week2 Regular Expressions ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- Coursera, Big Data 4, Machine Learning With Big Data (week 1/2)
Week 1 Machine Learning with Big Data KNime - GUI based Spark MLlib - inside Spark CRISP-DM Week 2, ...
- Intel® Threading Building Blocks (Intel® TBB) Developer Guide 中文 Parallelizing Data Flow and Dependence Graphs并行化data flow和依赖图
https://www.threadingbuildingblocks.org/docs/help/index.htm Parallelizing Data Flow and Dependency G ...
- SSIS Data Flow 的 Execution Tree 和 Data Pipeline
一,Execution Tree 执行树是数据流组件(转换和适配器)基于同步关系所建立的逻辑分组,每一个分组都是一个执行树的开始和结束,也可以将执行树理解为一个缓冲区的开始和结束,即缓冲区的整个生命周 ...
- Data Being Added Conflicts with Existing Data
While developing a page with multiple scrolls levels, and especially when using a grid, you may get ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
- data Mining with Weka: Trailer More Data Mining with Weka 用weka 进行数据挖掘 Weka 用weka 进行更多数据挖掘
https://www.youtube.com/user/WekaMOOC 大学公开课 视频教程 weka 入门教程 data Mining with Weka: Trailer More Dat ...
- Use Dynamic Data Masking to obfuscate your sensitive data
Data privacy is a major concern today for any organization that manages sensitive data or personally ...
随机推荐
- 请解释一下 JavaScript 的同源策略?
概念:同源策略是客户端脚本(尤其是Netscape Navigator2.0,其目的是防止某个文档或脚本从多个不同源装载.这里的同源策略指的是: 协议,域名,端口 相同,同源策略是一种安全协议.指一 ...
- dubbo面试题及答案
Dubbo是什么? Dubbo是阿里巴巴开源的基于 Java 的高性能 RPC 分布式服务框架,现已成为 Apache 基金会孵化项目. 面试官问你如果这个都不清楚,那下面的就没必要问了. 官网:ht ...
- Solo 开发者周刊 (第8期):Claude公司再度上新产品,成交额将超73亿美元
这里会整合 Solo 社区每周推广内容.产品模块或活动投稿,每周五发布.在这期周刊中,我们将深入探讨开源软件产品的开发旅程,分享来自一线独立开发者的经验和见解.本杂志开源,欢迎投稿. 好文推荐 Cla ...
- django 中的collectstatic
django 中的collectstatic 在Django中,"collectstatic"是一个管理命令,用于收集和复制项目中的静态文件到一个指定的静态文件目录,以便于部署. ...
- Git的存储原理
目录 Git 设计原理 Git vs SVN Git 存储模型 .git 目录结构 Git 基本数据对象 Git 包文件 Git 引用 Git 设计原理 概括的讲,Git 就是一个基于快照的内容寻址文 ...
- wireshark抓包分析数据
wireshark抓包分析数据 https://www.cnblogs.com/moonbaby/p/10528401.html https://blog.csdn.net/wangyiyungw/a ...
- 工业机器人的力控(Force Control)
相关: https://baijiahao.baidu.com/s?id=1785676027803650068 机器人编程人员需要提前知道机器人的摩擦力.阻力.质量.重力,等数值,然后建立基于物理模 ...
- NVIDIA Omniverse Audio2Face的安装
下载 NVIDIA Omniverse 并运行安装程序 - 安装后,打开 Omniverse Launcher - 在"Apps"(应用)部分中找到 Omniverse Audio ...
- 【转载】 gym atari游戏的环境设置问题:Breakout-v0, Breakout-v4, BreakoutNoFrameskip-v4和BreakoutDeterministic-v4的区别
版权声明:本文为CSDN博主「ok_kakaka」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/clksjx/ ...
- JVM的本地方法栈-通俗理解
1.本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的, 2.其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的N ...

