Coursera, Big Data 5, Graph Analytics for Big Data, Week 3
Graph Analytics 有哪些类型

node type (labels)

node schema: attributes 组成了schema.

同样的, Edge也有 Edge Type 和Edge Schema

如果是一个完整的图,会包含以下信息

weight 权重,比如两点之间的 距离

1. Path Analytics
一些定义:
walk - 图上随便走的轨迹
path - 没有中间node重复的walk,比如 A-B-C-D-B-E 这个属于walk 不属于 path, path 是constrained 的walk
Cycle - 3个以上节点组成的环
Acyclic - 无环图, 比如最常见的说法 DAG- directed acyclic graph.
trail - 没有edge 重复的walk
dimeter of graph - 从任何一个node出发, 到任何另一个node, 走最短路径,最后得到的最大hops 就是 dimeter

最短路径问题
Dijkstra's Algorithm


上面是简化版本的,现在考虑加上constrain


Dijkstra 算法在大数据情况下表现不好,计算量很大
2. Connectivity Analytics
名词 degree 指这个Node有多少个连接的edge
主要关注图的 robust 和 相似性


连接度 Connectivity
下图是基于node 的connectivity, 去掉三个node 就隔开了图,所有connectivity 等于 3

下图是基于edge 的connectivity, 去掉4个edge就隔开了图,所有说 edge connectivity = 4.

node degree: 就是有多少条edge连接到node上
- Define a node's in-degree (# of incoming edges) and out-degree (# of outgoing edges)
- Describe a process for calculating the similarity of two graphs by finding the following for each graph and comparing them: find the degree of each node in a graph, then create a histogram of how many nodes have a certain degree.
- Define listener nodes (greater in-degree than out-degree), talker nodes (greater out-degree than in-degree) and communicator nodes (high in-degree and high out-degree).
node degree 进一步分成 indegree 和 outdegree


3. Community Analytics
- List the three types of analytics questions asked about communities (static, evolution, and predictions) and identify a real world example of a question in those categories.
- Calculate the internal degree and external degree of nodes in a community.
- Recognize that, for a community to really be a community, the relative number of total edges within that community (cluster) should be high relative to the total number of edges from nodes in the community to nodes outside it.



怎么从network里面找到 community呢?这里介绍了两种方法,一种是关注 Local property
Clique - 小集团的意思,每个node都和其他node有连接

实际上,find 大于3或者4的clique比较难,所有我们要relax clique的定义,有两种relaxation, 一种基于distance, 一种基于density, 其中两种基于distance的定义是n-clique 和 n-clan, 基于density的是k-core.
下面是n-clique的说明,Mike 不属于绿色点形成的2-clique

n-clan 纠正了这种情况


前面是讲基于 local property 的community 发现算法,接着将基于 grobal property 的community 发现算法
By the end of this video you will be able to...
- Describe modularity conceptually -- a graph is more modular if there are more edges in that community than would be likely if edges were randomly assigned.
- Given two graphs, identify visually which is more modular.
- Identify the 6 ways in which communities are often tracked over time.
- Identify which of the 6 changes would happen when two companies merge and when a company spins off a start-up.
grobal property 特别关注的property 是 modularity
然后讲到了基于modularity 的community 发现方法叫 Louvain method. 具体详情见 https://www.youtube.com/watch?v=dGa-TXpoPz8


相对于static graph, 经常见的还有 evolving graph. 有6种类型的evolving method.

4. Centrality Analytics
By the end of this video you will be able to...
- Define an influencer in a social network as a node (e.g. person) who can reach all other nodes quickly.
- Identify the 2 key (central) player problems: Which nodes when removed will maximally disrupt a network and which set of nodes can reach (almost) all other nodes in a network.
- Identify the 4 types of centrality discussed: degree, group, closeness, and betweenness.
- Identify which type of centrality you would want to identify in the following 2 cases: when you have information you want to inject quickly into a graph that follows shortest paths for dissemination and when you have a commodity that flows through a network.

两个概念 Centrality and Centralization
Centralization is for a network. As the number of nodes in a network with high centrality increases (orange nodes), then the centralization of a network decreases -- because there is less variation in the centrality values of the nodes in the network.

有超过30种的测量centrality 的方法



讲 connectivity 时候提到了power law 算法,不知道具体是什么
Ref
https://afteracademy.com/blog/dijkstras-algorithm Dijkstras 算法有图解,很清楚
Coursera, Big Data 5, Graph Analytics for Big Data, Week 3的更多相关文章
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data》 密歇根大学 Charles Severance——Week6 JSON and the REST Architecture课堂笔记
Coursera课程<Using Python to Access Web Data> 密歇根大学 Week6 JSON and the REST Architecture 13.5 Ja ...
- 【Python学习笔记】Coursera课程《Using Python to Access Web Data 》 密歇根大学 Charles Severance——Week2 Regular Expressions课堂笔记
Coursera课程<Using Python to Access Web Data > 密歇根大学 Charles Severance Week2 Regular Expressions ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- Coursera, Big Data 4, Machine Learning With Big Data (week 1/2)
Week 1 Machine Learning with Big Data KNime - GUI based Spark MLlib - inside Spark CRISP-DM Week 2, ...
- Intel® Threading Building Blocks (Intel® TBB) Developer Guide 中文 Parallelizing Data Flow and Dependence Graphs并行化data flow和依赖图
https://www.threadingbuildingblocks.org/docs/help/index.htm Parallelizing Data Flow and Dependency G ...
- SSIS Data Flow 的 Execution Tree 和 Data Pipeline
一,Execution Tree 执行树是数据流组件(转换和适配器)基于同步关系所建立的逻辑分组,每一个分组都是一个执行树的开始和结束,也可以将执行树理解为一个缓冲区的开始和结束,即缓冲区的整个生命周 ...
- Data Being Added Conflicts with Existing Data
While developing a page with multiple scrolls levels, and especially when using a grid, you may get ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
- data Mining with Weka: Trailer More Data Mining with Weka 用weka 进行数据挖掘 Weka 用weka 进行更多数据挖掘
https://www.youtube.com/user/WekaMOOC 大学公开课 视频教程 weka 入门教程 data Mining with Weka: Trailer More Dat ...
- Use Dynamic Data Masking to obfuscate your sensitive data
Data privacy is a major concern today for any organization that manages sensitive data or personally ...
随机推荐
- SpringBoot配置文件的优先级
配置文件优先级 (1)命令行参数: (2)java:comp/env的JNDI属性(当前J2EE应用的环境): (3)JAVA系统的环境属性: (4)操作系统的环境变量: (5)JAR包外部的appl ...
- Python通过GPIO从DHT11温度传感器获取数据
Python通过GPIO从DHT11温度传感器获取数据 设备:树莓派4B.DHT11.杜邦线 DHT11 DHT11是一款有已校准数字信号输出的温湿度传感器. 其精度湿度±5%RH, 温度±2℃,量程 ...
- SpringBoot实战:轻松实现接口数据脱敏
引言 在现代的互联网应用中,数据安全和隐私保护变得越来越重要.尤其是在接口返回数据时,如何有效地对敏感数据进行脱敏处理,是每个开发者都需要关注的问题.本文将通过一个简单的Spring Boot项目,介 ...
- Vue bug from backend
一个后端引发前端的BUG 使用的框架是vue 代码里面有一个组件 <table :data="data"/> 获取后台数据 this.data = await fetc ...
- CSP2023
坐标HA 背景 NOIP都打完了,CSP-S都没写游记,所以来补一篇(逃-- 正文 Day 7*-1 考前一周停课集训,被whk老师怒斥不务正业,悲QWQ. Day 0 周五得到年级第一zyx的鼓励, ...
- Kmesh v0.4发布!迈向大规模 Sidecarless 服务网格
本文分享自华为云社区<Kmesh v0.4发布!迈向大规模 Sidecarless 服务网格>,作者: 云容器大未来. 近日 Kmesh 发布了 v0.4.0 版本,感谢社区的贡献者在两个 ...
- 使用 @Audited 增强Spring Boot 应用程序的数据审计能力
介绍 在Spring Boot开发的动态世界中,确保数据完整性和跟踪变化是至关重要的.实现这一目标的一个强大工具是@Audited注解.本文深入探讨了该注解的复杂性.其目的.实现步骤以及如何利用其功能 ...
- 【Spring-Security】Re11 Oauth2协议 P2 Redis存储 密码模式令牌
一.Redis配置 需要的依赖 <dependency> <groupId>org.springframework.boot</groupId> <artif ...
- 【转载】 Tensorflow如何直接使用预训练模型(vgg16为例)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_44633882/artic ...
- 国产显卡如何正确打开 —— Windows平台下使用驱动精灵为国产显卡更新驱动(兆芯平台)
买了一个国产的电脑,全国产,CPU慢些也就忍了,软件兼容性差.稳定性差也忍了,大不了就用来上网看电影嘛,关键问题是这个国产显卡放电影居然有些卡,播放电影的时候存在明显的卡顿感,这简直是把国产电脑在我脑 ...

