//最优二叉树
#include <iostream>
#include <iomanip>
using namespace std; //定义结点类型
//【weight | lchid | rchild | parent】
//为了判定一个结点是否已加入到要建立的哈夫曼树中
//可通过parent域的值来确定.
//初始时parent = -1,当结点加入到树中时,该结点parent的值
//为其父亲结点在数组Huffman中的序号.
template<typename T>
struct HuffNode {
T weight; //权值
int parent; //指向父节点的指针域(结点元素的下标)
int lch; //左指针域
int rch; //右指针域
}; //哈夫曼树的构造算法
template<typename T>
HuffNode<T> *HuffmanTree(int n, const T& sign) //生成最优二叉树
{
const int MAX_VALUE = ;
int i, j, min1, min2, x1, x2; //min1为最小值, min2为次小值, x1位最小值下标, x2位次小值下标
HuffNode<T> *ht = new HuffNode<T>[ * n - ]; //一个含有n个叶子结点的最优二叉树,总共有2*n-1个结点
HuffNode<T> *huffNode = ht;
for (i = ; i < * n - ; i++) //最优二叉树结点数组初始化
{
huffNode[i].weight = ; //权值都设为0
huffNode[i].parent = -; //父节点,左右孩子结点
huffNode[i].lch = -;
huffNode[i].rch = -; //都设置为-1,-1代表空
}
for (i = ; i < n; i++) //依次输入n个叶子结点的权值
cin >> huffNode[i].weight; for (i = ; i < n - ; i++)
{
min1 = min2 = MAX_VALUE;
// x1, x2 用来保存找到的两个最小结点在数组中的位置
x1 = x2 = ;
for (j = ; j < n + i; j++) //因为外循环每循环一次,实际结点个数增加到n+i个
{
if (huffNode[j].weight < min1 && huffNode[j].parent == -)
{
min2 = min1; //存在权值小于min1, 则min1赋值给次小值
x2 = x1; //次小值下标改变
min1 = huffNode[j].weight; //当前权值赋值给最小值
x1 = j; //并保存最小值下标
}
else if (huffNode[j].weight < min2 && huffNode[j].parent == -)
{
min2 = huffNode[j].weight; //当前值赋值给次小值
x2 = j; //保存次小值下标
}
}
//将找出的两个子树合并成一颗子树
//对找到的两个最小结点的父指针域进行赋值
huffNode[x1].parent = n + i;
huffNode[x2].parent = n + i;
//新合成树位置上的权值
huffNode[n + i].weight = huffNode[x1].weight + huffNode[x2].weight;
//两个最小结点的父结点的左右孩子域进行操作
huffNode[n + i].lch = x1;
huffNode[n + i].rch = x2;
}
return ht;
} template<typename T>
void ShowHTree(HuffNode<T> *HT, int nodeNum)
{
HuffNode<T> *p = HT;
int k;
cout << "k" << "\t\t" << "Weight" << "\t\t" << "Parent"
<< "\t\t" << "Lchild" << "\t\t" << "Rchild" << endl;
for (k = ; k < * nodeNum - ; k++)
{
cout << k << "\t\t" << (p + k)->weight << "\t\t"
<< (p + k)->parent << "\t\t"
<< (p + k)->lch << "\t\t" << (p + k)->rch << endl;
}
} /*************************编码*******************************/ const int MAXBIT = ; //定义Huffman编码的最大长度 //对于第i个字符,它的Huffman编码存放在Huffman[i].bit中的 从 Huffman[i].start 到 n 的分量中
struct HCodeType {
int bit[MAXBIT]; //用来保存字符 的 Huffman编码
int start; //start表示该编码在bit中的开始位置
}; void HuffmanCode(int n)
{
const int MAXODE = , MAXLEAF = ; //最大编码长度,最多叶子数
HuffNode<int> *huffNode; //用于 生成Huffman 编码
HCodeType *huffCode, cd;
int i, j, c, par, sign = ; huffNode = HuffmanTree(n, sign); //建立Huffman树 huffCode = new HCodeType[n]; //初始化HuffCode
for (int k = ; k < n; k++)
huffCode[k].bit[i] = ; ShowHTree(huffNode, n); /**********************编码过程*************************/
for (i = ; i < n; i++) //n--是叶结点数,不是全部结点数
{
cd.start = n - ; //从叶结点开始
c = i; //c为 i的工作指针,以防误操作修改了 i
par = huffNode[c].parent;
while (par != -) //由叶结点向上直到树根
{
if (huffNode[par].lch == c) //右子树编号 == c ==> 右是0标志
cd.bit[cd.start] = ;
else //左是 1 标志
cd.bit[cd.start] = ;
cd.start--; //开始位置向前
c = par; //得到父亲结点的下标
par = huffNode[c].parent; //由叶结点向上直到树根 -- 得到父级点的父亲结点
}
for (j = cd.start + ; j < n; j++) //保存求出的每个叶结点的哈夫曼编码和编码的起始位
{
huffCode[i].bit[j] = cd.bit[j];
}
huffCode[i].start = cd.start; //设置编码的开始位置
} //输出
for (i = ; i < n; i++) //输出每个叶子结点的哈夫曼编码
{
for (j = huffCode[i].start + ; j < n; j++) {
cout << huffCode[i].bit[j] ;
}
cout << endl;
}
} int main()
{
int n; cout << "请输入叶子结点个数: " << endl;
cin >> n; HuffmanCode(n); system("pause"); return ;
}

Huffman的应用_Huffman编码的更多相关文章

  1. Huffman 哈夫曼编码与译码的原理剖析及C++实现

    原理 我们在信息存储时,希望以最少的空间去存储最大的数据,方便数据的传输,那么该怎样做呢? 我们想到将源信息转化为01序列存储,但是这样以来又有一个问题,就是子串匹配问题,我们为了解决这个方法,想到了 ...

  2. huffman树即Huffma编码的实现

    自己写的Huffman树生成与Huffman编码实现 (实现了核心功能 ,打出了每个字符的huffman编码 其他的懒得实现了,有兴趣的朋友可以自己在我的基础增加功能 ) /* 原创文章 转载请附上原 ...

  3. Huffman树的编码译码

    上个学期做的课程设计,关于Huffman树的编码译码. 要求: 输入Huffman树各个叶结点的字符和权值,建立Huffman树并执行编码操作 输入一行仅由01组成的电文字符串,根据建立的Huffma ...

  4. Jcompress: 一款基于huffman编码和最小堆的压缩、解压缩小程序

    前言 最近基于huffman编码和最小堆排序算法实现了一个压缩.解压缩的小程序.其源代码已经上传到github上面: Jcompress下载地址 .在本人的github上面有一个叫Utility的re ...

  5. Huffman树的构造及编码与译码的实现

    哈夫曼树介绍 哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树.所谓树的带权路径长度,就是树中所有的叶结点的权值乘上其到根结点的路径长度(若根结点为0层,叶结点到根结点的路径长度为叶结点的层数) ...

  6. Huffman树及其编解码

    Huffman树--编解码 介绍:   Huffman树可以根据输入的字符串中某个字符出现的次数来给某个字符设定一个权值,然后可以根据权值的大小给一个给定的字符串编码,或者对一串编码进行解码,可以用于 ...

  7. bzoj 4198: [Noi2015]荷马史诗

    Description 追逐影子的人,自己就是影子. --荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>.但是由& ...

  8. gzip 所使用压缩算法的基本原理(选摘)

    摘自:http://blog.csdn.net/ghevinn/article/details/45747465  gzip 所使用压缩算法的基本原理 gzip 对于要压缩的文件,首先使用LZ77算法 ...

  9. javascript实现数据结构: 树和二叉树的应用--最优二叉树(赫夫曼树),回溯法与树的遍历--求集合幂集及八皇后问题

    赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支 ...

随机推荐

  1. PHP7中php.ini、php-fpm和www.conf的配置

    引自:https://typecodes.com/web/php7configure.html 1 配置php.ini php.ini是php运行核心配置文件: ######避免PHP信息暴露在htt ...

  2. 模仿iframe框架,由分隔栏动态改变左右两侧div大小———基于jQuery

    <!DOCTYPE html><html lang="zh-cn"><head> <meta charset="utf-8&qu ...

  3. 前端构建工具:gulp的配置与使用

    安装gulp 因为gulp是基于node的管理工具,所以要先安装nodejs安装nodejsnodejs下载地址:中文站:http://nodejs.cn/ 英文站:https://nodejs.or ...

  4. 微信签名算法的服务端实现(.net版本)

    一.概要 微信此次开放JS接口,开放了一大批api权限,即使在未认证的订阅号也可以使用图像接口,音频接口,智能接口,地理位置,界面操作,微信扫一扫等功能.要知道:以前订阅号只能接受和被动回复用户消息而 ...

  5. poj 3680 Intervals

    给定N个带权的开区间,第i个区间覆盖区间(ai,bi),权值为wi.现在要求挑出一些区间使得总权值最大,并且满足实轴上任意一个点被覆盖不超过K次. 1<=K<=N<=200.1< ...

  6. gulp-rev-collector自定义修改rev-manifest.json后替换不成功的问题分析

    由于项目需要,我要把common.js替换成build.min.js,接着后面才用到build.min.js=>build-te234ds.min.js这样的形式替换,但是我发现怎么替换都不能把 ...

  7. ED2k Resource

    http://www.lwkk.com/ http://www.ed2000.com/

  8. Linux系统下压缩文件时过滤指定的文件 |Linux系统压缩指定文件代码

    进入要压缩的目录: [root@iZ25c748tjqZ wechat]# cd /alidata1/htdocs/wechat/ 查看目录: [root@iZ25c748tjqZ wechat]# ...

  9. rabbitmq python

    import pika connection = pika.BlockingConnection(pika.ConnectionParameters( 'localhost',9672)) chann ...

  10. 图解c/c++多级指针与“多维”数组

    声明:本文为原创博文,如有转载,请注明出处.若本文有编辑错误.概念错误或者逻辑错误,请予以指正,谢谢. 指针与数组是C/C++编程中非常重要的元素,同时也是较难以理解的.其中,多级指针与“多维”数组更 ...