KMP算法

KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数。
KMP算法是利用next数组进行自匹配,然后来进行匹配的。

Next数组

Next数组表示一个前缀的最长proper的长度。
简单地讲,$S[1 \sim next[i]] = S[next[i]+1 \sim i] $.

循环节

一个字符串\(S\),若是由字符串\(P\)重复\(k(k>1)\)次形成的,则称字符串\(P\)是\(S\)的一个循环节。使\(k\)最大的循环节被称为最小循环节。

引理:

对于一个字符串的前缀\(S[1 \sim i]\),它存在一个长度为\(len\)的循环节,当且仅当\(len|i\),\(len<i\),且\(S[1 \sim len]=S[len+1 \sim i]\).
即\(len\)为\(S[i]\)的一个\(proper\)长度且\(len\)整除\(i\).
显然,当\(len\)取\(i-next[i]\)时,求得的循环节为最小循环节。通过\(next\)数组的不断迭代,可以求出前缀\(S[i]\)的所有循环节。

对于引理的证明

先证必要性。设\(S[1 \sim i]\)具有长度为\(len\)的循环节,显然\(len\)整除\(i\),并且\(S[1 \sim i-len]\)和\(S[len+1 \sim i]\)都是由\(i/len-1\)个循环节构成的。故\(S[1 \sim i-len]=S[len+1 \sim i]\).
再证充分性。设\(len\)整除\(i\),并且\(S[len+1 \sim i]=S[1 \sim i-len]\),因为\(len<i\),所以\(S[1 \sim i-len]\)和\(S[len+1 \sim i]\)的长度不小于\(len\)且是\(len\)的倍数。各区前\(len\)个字符,有\(S[1 \sim len]=S[len+1 \sim 2*len]\),可以发现,他们是以\(len\)为间隔错位对齐的。故\(S[1 \sim len]\)是\(S[i]\)的一个循环节。

推论

任意循环元的长度必然是最小循环元长度的整数倍。

【文文殿下】浅谈KMP算法next数组与循环节的关系的更多相关文章

  1. 【字符串算法3】浅谈KMP算法

    [字符串算法1] 字符串Hash(优雅的暴力) [字符串算法2]Manacher算法 [字符串算法3]KMP算法 这里将讲述  [字符串算法3]KMP算法 Part1 理解KMP的精髓和思想 其实KM ...

  2. 浅谈KMP算法及其next[]数组

    KMP算法是众多优秀的模式串匹配算法中较早诞生的一个,也是相对最为人所知的一个. 算法实现简单,运行效率高,时间复杂度为O(n+m)(n和m分别为目标串和模式串的长度) 当字符串长度和字符集大小的比值 ...

  3. 浅谈KMP算法

    一.介绍 烤馍片KMP算法是用来处理字符串匹配问题的.比如说给你两个字符串A,B,问B是不是A的子串? 比如,eg就是aeggx的子串 一般讲字符串A称为主串,用来匹配的B串称为模式串 定义n为字符串 ...

  4. 浅谈KMP算法——Chemist

    很久以前就学过KMP,不过一直没有深入理解只是背代码,今天总结一下KMP算法来加深印象. 一.KMP算法介绍 KMP解决的问题:给你两个字符串A和B(|A|=n,|B|=m,n>m),询问一个字 ...

  5. 浅谈 KMP 算法

    最近在复习数据结构,学到了 KMP 算法这一章,似乎又迷糊了,记得第一次学习这个算法时,老师在课堂上讲得唾沫横飞,十分有激情,而我们在下面听得一脸懵比,啥?这是个啥算法?啥玩意?再去看看书,完全听不懂 ...

  6. 单模式串匹配----浅谈kmp算法

    模式串匹配,顾名思义,就是看一个串是否在另一个串中出现,出现了几次,在哪个位置出现: p.s.  模式串是前者,并且,我们称后一个 (也就是被匹配的串)为文本串: 在这篇博客的代码里,s1均为文本串, ...

  7. 安卓开发_浅谈ListView(SimpleAdapter数组适配器)

    安卓开发_浅谈ListView(ArrayAdapter数组适配器) 学习使用ListView组件和SimapleAdapter适配器实现一个带图标的ListView列表 总共3部分 一.MainAc ...

  8. 浅谈分词算法(5)基于字的分词方法(bi-LSTM)

    目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...

  9. 浅谈分词算法(4)基于字的分词方法(CRF)

    目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...

随机推荐

  1. Git----时光穿梭机之撤销修改05

    自然,你是不会犯错,不过现在是凌晨两点,你正在赶一份工作报告,你在readme.txt中添加了一行: $ cat readme.txtGit is a distributed version cont ...

  2. Apache Hadoop 集群安装文档

    简介: Apache Hadoop 集群安装文档 软件:jdk-8u111-linux-x64.rpm.hadoop-2.8.0.tar.gz http://www.apache.org/dyn/cl ...

  3. How To Install Spring IDE In Eclipse

    Spring IDE is a very useful graphical user interface tool adding support for Spring Framework. In th ...

  4. 小学生福利V2.0.1

    211606320刘佳&211506332熊哲琛 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Plann ...

  5. 在Ubuntu16.04中安装Docker CE

    apt-get install apt-transport-https ca-certificates curl software-properties-common curl -fsSL https ...

  6. 克拉 & 24K

    [克拉] 克拉(Ct)是宝石的质量(重量)单位,现定1克拉等于0.2克或200毫克.一克拉又分为100分,如50分即0.5克拉,以用作计算较为细小的宝石.因为宝石的密度基本上相同,因此越重的宝石体积越 ...

  7. 解压*.tar.bz2的坑

    下了一个压缩包,tar -xf 解压不了 解决办法: 装了bzip2工具 bzip2 -d **.tar.bz2 //将文件解压成**.tar tar -xf **.tar //解包 听说可以 tar ...

  8. centos环境下输入命令不能有中文那么我怎么插入中文数据到数据库

    centos环境下输入命令不能有中文那么我怎么插入中文数据到数据库 如下图: 首先查看是否安装了中文语言支持组件 yum grouplist 没有的话安装 yum install Chinese Su ...

  9. 从原理上理解Base64编码

    开发者对Base64编码肯定很熟悉,是否对它有很清晰的认识就不一定了.实际 上Base64已经简单到不能再简单了,如果对它的理解还是模棱两可实在不应该.大概介绍一下Base64的相关内容,花几分钟时间 ...

  10. polymer技巧

    1.添加一个div元素 我们完全可以自己造一个这样的东西出来,比如下面例子我们给 div 元素添加一个 is="demo-test" <script> var Poly ...